原著論文

埼玉県秩父盆地,尾田蒔丘陵のチバニアン期(中期更新世)テフラの 岩石記載的特徴とフィッション・トラック年代

加藤茂弘 1)*• 檀原 徹 2)• 山下 透 2)• 岩野英樹 2)

Petrological characteristics and zircon fission-track ages of Chibanian (middle Pleistocene) tephra layers on the Odamaki Hill in the Chichibu Basin, Saitama Prefecture, eastern Japan

Sigehiro Katoh^{1)*}, Tohru Danhara²⁾, Tohru Yamashita²⁾ and Hideki Iwano²⁾

Abstract

More than 20 Chibanian tephra layers have been deposited on the higher terrace surface (Odamaki surface) along the Ara River in the Chichibu Basin. The grain and heavy mineral compositions and refractive indices of orthopyroxene and amphibole phenocrysts were analyzed in 17 samples from the OD1 (lowest) to Tama 128 (uppermost) tephras, to re-examine previous work on tephra correlation. OD1 exhibited petrographic features different from those reported in previous studies and was correlated to Kap-5 tephra in the southern Kanto region. Four biotite-rich volcanic ashes denoted OD6, OD9, OD11, and OD15, were correlated robustly with A₁Pm to A₄Pm of the Omachi APm tephras, respectively. However, no tephra layer in the basin could be correlated with Yt-hop tephra at the eastern foot of the Yatsugatake Volcano Group. The zircon fission-track (FT) dates of OD2 and OD6 were determined to be 510 ± 160 and 350 ± 70 ka (1 σ error each), respectively; a more precise FT age of 356 ± 29 ka was obtained for OD6. All FT dates obtained using the same procedures and instruments revealed A₁Pm to have a weighted mean age of 375 ± 21 ka. The estimated eruptive ages of OD2 and OD6 suggest that the Odamaki surface was formed between 500 and 600 ka.

Key words: Chibanian tephra, petrographic characteristics, fission-track dating, Omachi APm tephras, Odamaki surface, Chichibu Basin

(2021年8月23日受付, 2021年10月8日受理, 2022年1月5日発行)

1) 兵庫県立人と自然の博物館 〒 669-1546 兵庫県三田市弥生が丘 6

* Corresponding author: katochan@hitohaku.jp

Museum of Nature and Human Activities, Hyogo; 6 Yayoigaoka, Sanda, Hyogo, 669-1546 Japan

²⁾ 株式会社京都フィッション・トラック 〒 603-8832 京都市北区大宮南田尻町 44-4 Kyoto Fission-Track Co., Ltd.; 44-4 Minamitajiri-cho, Kita-ku, Kyoto, 603-8832 Japan

はじめに

関東地方西部の荒川中流域に位置する秩父盆地では (図1)、 荒川とその支流の赤平川に沿って多数の河岸段 丘が分布し、それらは高位(上位)段丘面、中位段丘面、 および低位(下位)段丘面群に大別されている(町田・ 井口, 1952;町田・磯田, 1983;吉永・宮寺, 1986 など). 高位段丘面は、荒川~赤平川間に開析が進んで やせ尾根状を呈する堆積面を残しており(図2), 尾笛 蒔面(埼玉県, 1954;町田・磯田, 1983;吉永・宮寺, 1986), あるいは尾田蒔丘陵(矢部・青木, 1907; 皆 川・町田, 1971) と呼ばれている. 尾田蒔面は厚さ 30 ~ 40mの扇状地性砂礫層(尾田蒔礫層:町田・磯田, 1983)から構成され、その上位には、秩父盆地の西方 に位置する八ヶ岳火山や黒富士火山(図1)などから噴 出した多数のテフラが挟在する、厚さ15~20mの火 山灰土層(尾田蒔ローム層)が堆積している(皆川・町 田, 1971;町田・磯田, 1983など). 尾田蒔ローム層 は多摩ローム層に対比され(羽鳥・寿円, 1958), その 中部に挟在する黒雲母に富む厚さ10~15cmの細粒火 山灰は、関東平野西縁部に分布する八王子黒雲母軽石 (HBP:皆川・町田, 1971;町田, 1973) に対比され る可能性が示唆された(皆川・町田, 1971;町田・磯田, 1983).

鈴木・早川(1990)は、この火山灰を HBP に対比 できないとして尾田蒔火山灰(ODA)と命名し、その 上位に3層の黒雲母に富む細粒火山灰を新たに識別・ 記載して,上位の2層を飛騨山脈にあった樅沢岳火山(水 鉛谷火道) (図1) を噴出源とする (原山, 1987) 大 町 APm テフラ群(A1Pm ~ A5Pm:中谷, 1972;木 村, 1987) に対比した. また, 鈴木 (2000) は, 尾田 蒔ローム層に挟在するテフラを下位より OD1 ~ OD17 と命名した. OD13 と OD17 はそれぞれ, 鈴木・早 川(1990)により八ヶ岳火山起源の角閃石含有白色軽 石 (Yt-hop:町田・新井, 2003; Ho. 白 Pm: 八ヶ岳 団体研究グループ, 1988) と加久藤テフラ(Kkt:町 田・新井, 2003) に対比されたテフラである. 4 層の 黒雲母含有火山灰は、下位より順に OD6 (= ODA), OD9, OD11, OD15 に相当する. 鈴木 (2000) は, これらの黒雲母含有火山灰の岩石記載的特徴を再検討 し,普通角閃石の屈折率やチタン鉄鉱の主成分化学組成, および Yt-hop との層位関係に基づき, OD6 を HBP とA₁Pm に, OD9, OD11 および OD15 を A₂Pm, A3Pm および A4Pm に, それぞれ対比した. さらに南 関東地域に分布する TE-5 テフラが HBP に対比され ること(町田ほか, 1974)から, OD6, HBP および TE-5 は全て A1Pm に対比可能であると考えた(鈴木, 2000, 2008).

尾田蒔ローム層中のテフラの岩石記載的特徴について は、町田・磯田(1983)が重鉱物組成を、関東火山灰 グループ(1992, 2001)が鉱物組成と一部のテフラの 普通角閃石・カミングトン閃石・直方輝石(従来の斜方 輝石)の屈折率を,鈴木・早川(1990)や鈴木(2000) が主に APm テフラ群に対比可能なテフラを対象に鉱物 組成、直方輝石・普通角閃石の屈折率、およびチタン鉄 鉱の主成分組成を、それぞれ報告している.近年では坂 田ほか(2012)が、APm テフラ群以外の軽石質テフ ラの重鉱物組成や普通角閃石・カミングトン閃石の屈 折率を報告し、OD1の普通角閃石の屈折率が上位の軽 石質テフラ群のそれよりも明らかに高く、テフラ対比 に際して有効な指標となると指摘し、さらに岩石記載 的特徴に基づくと OD13 と Yt-hop の対比(鈴木・早 川, 1990など)には問題があると述べた.しかし,坂 田ほか(2012)はOD1がカミングトン閃石を含まな いとしているが、関東火山灰グループ(2001)は OD1 がカミングトン閃石を2%ほど含むとしており、普通

Volcanoes, As: Asama, Hr: Haruna, Yt: Yatsugatake, Kf: Kurofuji, Fj: Fuji, Hk: Hakone, On: Ontake, Mm: Momisawadake (Suiendani vent).

- 図1 関東地方西部, 荒川中流域の秩父盆地とその西方に位置する 主な第四紀火山. 樅沢岳火山(Mm)は残存する水鉛谷火道から推定された 飛騨山脈に位置する第四紀火山で,大町 APm テフラ群の 給源火山と推定されている(原山, 1987).
- Figure 1. Locations of the Chichibu Basin along the middle reach of the Ara River in the western part of Kanto District, eastern Japan, and the main Quaternary volcanoes west of the basin. The Momisawadake (Mm) is the Quaternary source volcano of the APm tephras inferred from the Suiendani Vent found in the Hida Mountains (Harayama, 1987).

角閃石の屈折率も両者で異なる.したがって,坂田ほか (2012) で記載された OD1 が,関東火山灰グループ (2001) が記載した OD1 とは異なるテフラである可能 性も残されている.

ところで、OD6 (ODA) は中部・関東地方を広く覆 うチバニアン期の広域指標テフラである A1Pm に対比 可能であり、A1Pmの噴出年代はこれらの地域におけ る中期更新世の古環境変動や段丘発達史を明らかにする うえで重要な意義を持つ(鈴木・早津, 1991). A1Pm とそれに対比されるテフラでは、350~470 kaのジル コン結晶を用いたゼータ較正に基づくフィッション・ト ラック(FT)年代(町田, 1996;鈴木ほか, 1998; 檀原ほか、1999;伊藤、1999など)や、260~700 kaの石英の熱ルミネッセンス(TL)年代および電子 スピン共鳴 (ESR) 年代 (平賀・市川, 1988; 今井・ 下川, 1990; Toyoda et al., 2006; Tsukamoto et al., 2007) が得られてきた. さらに, 赤色アイソサー マル熱ルミネッセンス(RITL)年代として388±50 ka (Tsukamoto et al., 2007) が, ジルコンの(U-Th) / He 年代として 375 \pm 13 ka (Ito and Danišík, 2020)が、それぞれ得られている(誤差はともに2) σ). しかし, A1Pmの噴出年代には, 酸素同位体ス テージ (MIS) 11 のピーク直後の 380 ~ 410 ka (鈴 木,2000;斉藤,2000;中澤ほか,2009;坂田ほ か、2011 など)、MIS10 の寒冷期のピーク付近の 350 ~ 360 ka (町田・新井 2003;町田, 2008), および MIS11から MIS10に向けて寒冷化する時期の360~ 380ka(鈴木, 2008;中里・檀原, 2005など)とす る3つの見解があり、一致をみていない.

本研究では、尾田蒔ローム層に挟在する OD1 から Tama128 (関東火山灰グループ, 2001) までのテフ ラのうち、17層のテフラの粒子組成・重鉱物組成、直 方輝石・普通角閃石・カミングトン閃石の屈折率など の岩石記載的特徴を明らかにし、OD1の重鉱物組成や 普通角閃石の屈折率の相違,黒雲母含有火山灰とAPm テフラ群との対比,および OD13 と Yt-hop の対比な どを再検討する.次に、尾田蒔ローム層中で下位より 2番目のテフラである OD2 と、A1Pm に対比された OD6 (ODA) を対象として、ゼータ較正されたジルコ ンFT 年代測定を行った. さらに OD6, HBP, TE-5 などの関東地方で AiPm に対比されたテフラを対象と して、同一機関、同一手法で行われたジルコンFT 年代 測定結果を総合し、A1Pm の噴出年代を検討するとと もに、OD2のジルコンFT年代などを加味して尾田蒔 面の形成年代を考察する.

試 料

皆川・町田 (1971),町田・磯田 (1983),鈴木・ 早川(1990)が報告した尾田蒔丘陵南部,埼玉県秩父 市安立の露頭(北緯35°58'37.1",東経139°02' 29.1")(図 2, Loc.1)において、1985年から2000 年にかけて、テフラ露頭の記載と、FT 年代測定および 岩石記載的特徴の分析用試料の採取を行った.本地点は, 鈴木(2000, 2008)や坂田ほか(2012)が報告した, 埼玉県秩父群小鹿野町長留の防災基地南方の粘土採掘場 の露頭(北緯35°58'37.1",東経139°02'29.1")(図 2 の★)の約 200 m 北に位置する. 安立付近から露頭 に向かう道路の切割では尾田蒔礫層が観察できた. 露頭 付近では礫層最上部の基質が火山灰質粘土となり、礫層 直上に堆積する OD1 ~ OD2 間の火山灰土中にまで小 礫や細礫が散在したり、それらを混入する砂層のレンズ が挟在したりすることから、尾田蒔面は OD1 の降灰前 後に離水したとみられる.

本研究ではまず, OD1からOD17(Kkt)までのテ フラから試料を採取した(図3). OD7やOD10は軽 石の密集層準であったが、上限・下限が不明瞭であった. OD12は直下の火山砂と軽石,スコリアが混交した堆 積状況を示し、OD14 は直下の OD13 や直上の OD15 との境界が漸移的であった. このようにテフラ層として 露頭で明瞭に識別できなかったため、これらのテフラか らは試料を採取しなかった.一方,OD4では上下2層 の降下ユニットが、OD5 では中部の赤褐色スコリアを 含む3層の降下ユニットが確認されたことから,各ユ ニットから試料を採取した. さらに OD17 では前処理 後に十分な量の粒子を得ることができなかったため、以 下では、各テフラから採取して分析した試料をテフラ名 に対応させて、下位より順に Od-1 ~ Od-16 のように 表記する(表1). また, OD4 では上下の各降下ユニッ トからの試料を Od-4U および Od-4L, OD5 では 3 層 の降下ユニットからの試料を下位から Od-5L, Od-5M および Od-5U とした.

OD17より上位のテフラでは、関東火山灰グルー プ(2001)のTama125,Tama126,Tama128と, Tama126~Tama127間の2層の白色軽石・褐色ス コリア・青灰色岩片の密集層から試料を採取した(図 3).Tama127は厚さ10 cmのスコリア層とされてい る(関東火山灰グループ,2001).Tama128の約1 m下位にスコリアが多く散在する層準があり、これが Tama127に相当すると判断したが(図3),上限・下 限が不明瞭であったため試料を採取しなかった.本研究 では、これらOD17より上位のテフラを、下位より順に、 安立1~安立5テフラ(YS1~YS5)と仮称し、採取 した試料名も上記と同様な略号(Ys-1~Ys-5)とした (図 3,表1). YS1 が Tama125, YS2 が Tama126,
YS5 が Tama128 に相当する. さらに OD6 は厚さ約
10~15 cm の全層から, OD2 は基底から約 10 cm
上位までの部分から,それぞれ湿潤重量で 0.5~1.0
kg を採取して FT 年代測定用試料とした.

方 法

1. テフラ分析

 $50 \sim 100$ g のテフラ試料を 500 ml ポリプロピレ ンビーカーに取り,約5%の過酸化水素水を加えて 24 時間放置した後,超音波洗浄と水簸を繰り返して粒径 1/16 mm 未満の粒子を除去した.水簸の際には篩径 0.063 mm (250メッシュ)のステンレス篩を用いて, 黒雲母ができるだけ流失しないように配慮した.残っ た粒径 1/16 mm 以上の粒子に 2~5%に薄めた塩酸 を加えて 24 時間放置し,超音波洗浄と水簸を繰り返し て粘土分を完全に除去した後,自然乾燥させた.乾燥後 の試料を篩分け,粒径 1/2 mm 以上, 1/2~1/4 mm, 1/4~1/8 mm, 1/8~1/16 mm の 4 つの粒子集団を

図2 秩父盆地南西部の尾田蒔面(荒川の高位段丘面)とそれを覆 うチバニアン期テフラ層の試料採取地点. 星印は鈴木(2000,2008)や坂田ほか(2012)の試料採 取地点.基図は国土地理院発行の2万5千分の1地形図「皆 野」および「秩父」を使用.

Figure 2. Sampling site for the Chibanian tephra layers deposited on the Odamaki surface (the higher terrace surface along the Ara River) in the southwestern part of the Chichibu Basin.

A star indicates the sampling site used by Suzuki (2000, 2008) and Sakata et al. (2012). Topographic maps used, "Minano" and "Chichibu", have a scale of 1:25,000 and are published by the Geospatial Information Authority of Japan (GSI).

得た. なお OD17 は, 試料の洗浄・ふるい分け後に粒 径 1/16 mm 以上の粒子がほとんど得られず, 分析でき なかった. 本研究では, 主に粒径 1/8 ~ 1/16 mm の粒 子をテフラの粒子組成と重鉱物組成の分析に用いた. た だし, 同粒径範囲の粒子が乏しい試料 (Ys-3 と Ys-4 など)では, 粒径 1/4 ~ 1/8 mm の粒子について粒子 組成と重鉱物組成を分析した. ほとんどのテフラで風化 により火山ガラスが残存していなかったため, 火山ガラ スの形態は分析しなかった.

粒子組成と重鉱物組成は加藤ほか(2001)を参照し, 粒径 1/8 ~ 1/16 mm の粒子は 200 倍の偏光顕微鏡下 で,粒径 1/4 ~ 1/8 mm の粒子は 100 倍の双眼実体顕 微鏡下で,構成粒子および重鉱物をそれぞれ 200 個観 察し,同定・計数した.粒子組成では,粒子を火山ガラ ス,長石類,石英,重鉱物,岩片,その他(玉髄や風化 粒子など)に区分し,石英では高温型石英(β – 石英) の有無を確認した.重鉱物組成では,カンラン石,イデ ィングサイト(Iddingsite),直方輝石,普通輝石,普 通角閃石(色調により緑色普通角閃石と褐色普通角閃石 に区分),カミングトン閃石,不透明(鉄)鉱物(磁鉄 鉱,赤鉄鉱,褐鉄鉱など),黒雲母,ジルコン,燐灰石, その他(緑簾石や同定不能な重鉱物)を同定,計数した. 偏光顕微鏡下でのイディングサイトや不透明鉱物の同定 は,透過光と落斜光による観察を併用して行った.

重鉱物の屈折率は、直方輝石、普通角閃石、カミング トン閃石を対象とし、それぞれ最大屈折率(直方輝石は ア、普通角閃石とカミングトン閃石は n2)を測定した. 屈折率は、檀原(1993)、Danhara et al. (1992)、お よび鎌田ほか(1994)に従って、30粒子以上の結晶に ついて温度変化型屈折率測定装置(兵庫県立人と自然の 博物館に設置の RIMS86 と株式会社京都フィッション・ トラックに設置の RIMS87 もしくは RIMS2000)を用 いて測定した. この方法による鉱物の屈折率の測定誤差 は、±0.001 とされている(檀原、1993).

2. OD2 と OD6 (ODA) のジルコン FT 年代測定

OD2 から採取した試料(自然乾燥後の重量 665 g) を粉砕,超音波洗浄した後,水簸を繰り返して重鉱物を 濃集させ,NEOMAX 磁石を用いて磁選した.得られ た非磁性粒子を比重 3.06 に調整した SPT 重液を用い て重液分離し,ジルコン結晶約 3000 個を得た.きわめ て均質な自形ジルコン結晶が豊富に得られ,かつフィッ ション・トラックの計数面積を広くとることができる粗 粒結晶を多く含むことから,FT 年代測定には適してい ると判断された.OD6 から採取した試料(自然乾燥後 の試料から 46.3 gを処理)も同様に処理し,ジルコン 結晶約 3000 個を得た.ジルコン結晶は淡桃色細粒で均

Figure 3. Geologic columnar section of the Chibanian tephra layers on the Odamaki surface with horizons of the sampled tephras. The names of the tephra layers from OD1 to OD17 and those from Tama125 to Tama128 have been derived from Suzuki (2000) and Kanto Ash Layers Research Group (2001), respectively. The samples analyzed were taken from individual air-fall units of OD4 (upper and lower units: OD4U and OD4L) and OD5 (upper, middle and lower units: OD5U, OD5M and OD5L).

表1 秩父盆地,尾田蒔面上のチバニアン期テフラ層の岩石記載的特徴

 Table 1. Petrographic characteristics of the Chibanian tephra layers deposited on the Odamaki surface in the Chichibu Basin, eastern Japan.

Sample Name		ant 1 1		3	Grain	ompos	ition (%)						Heav	y mine	ral con	npositio	on (%)				
analyzed grain size (mm)	Color and lithology	(cm)	Gl	L Qz	m Fl	Hm	Rf	Ot	Total No.	01	Id	Opx	Срх	Gho	Bho	Cum	Opq	Bt	Zr	Ap	Ot	Total No.
Yasudate tephra group																						
Yasudate-5 (Ys-5)	r.br - or	30-90	0	0	4	52	39	5	200	25	3	24.5	12	2.5	0	0	24	7	0	2	0	200
1/8-1/16 (upper) & 1/8-1/4 (lower)	VS, SC		0	0.5	1	67.5	12	19	751	11	48	5.5	14.5	2	0	0	17.5	1.5	0	0		507
Yasudate-4 (Ys-4)	w.gr, or, bl.gr	30	0	6.5	23	22	24	24.5	1241	2	14	0	1	6.5	0.5	0	69.5	6	0.5	0	0	271
1/8-1/4 only	pm, sc, li																					
Yasudate-3 (Ys-3)	w.gr, or, bl.gr	10-20	0	1.5	5.5	76.5	16	0.5	433	0.5	27.5	0	0	11	0.5	0	54	6.5	0	0	0	330
1/8-1/4 only	pm, sc, li																					
Yasudate-2 (Ys-2)	w.gr, or, bl.gr	10-20	0	7	45	25	17	6	200	0	7	0.5	0.5	27	2	5	48.5	9	0	0.5	0	200
	pm>sc, li		0	19.5	53	22	4.5	1	1124	0.5	9.5	0.5	0	33.5	2	*	49	4	1	0	0	246
Yasudate-1 (Ys-1)	or - r.br	30-40	0	1	3	93	2	1	200	0	0.5	4	1	*	0	0	94	0	0	*	0.5	200
	vs, sc>>pm		0	*	2.5	95.5	1	1	947	•	4	9	0.5	0	0	0	86.5	*	0	0	•	906
Odamaki tephra group Upper Odamaki tephra grou	qu																					
Odamaki-16 (Od-16)	y.br	25-30	0	1	5	37	24.5	32.5	200	0	14.5	0.5	*	6.5	1	1	39	37	0	0.5	0	200
1/16-1/8	pm, sc, li		•	2.5	10.5	73	3.5	10	200	1	0	3	0.5	39.5	1	0	36.5	18	0	0.5	0	200
Odamaki-15 (Od-15)	y.br - br	30-40	0	*	9	31	0	60	200	0	0	0	0	2			18.5	79.5	*	0	0	200
1/16-1/8	va>sc, pm, li		0	*	8	74.5	15.5	2	200	0	4	0	0	1.5	•	0.5	8.5	85	0	0	0	200
Odamaki-13 (Od-13)	w.gr	40-70	0	2	34.5	60	3	0.5	200	0	0	0	0	73.5	0.5	9	15.5	1.5	0	0	0	200
1/16-1/8	pm>sc, li																					
Odamaki-11 (Od-11)	br	5-8	0	*	10	84.5	0	5.5	200	0	0	0	0	1.5	0	*	11.5	86.5	0.5	0	0	200
1/16-1/8	va>sc, pm, li																					
Odamaki-9 (Od-9)	br	20-25	0	*	11.5	82	0	6.5	200	0	0	0	0	3	*	*	18	79	0	0	0	200
1/16-1/8	va>sc, pm, li																					
Odamaki-8 (Od-8)	w.gr	20-50	0	2	20	75.5	2.5	0	200	0	0	0	0	38.5	3	*	56.5	1	.*	1	0	200
1/16-1/8	pm, sc, li																					
Odamaki-6 (Od-6)	gr - y.gr	8-15	0	3	20	74	0	3	200	0	0	0	0	2	0	*	3.5	94	0.5	0	0	200
= Odamaki Ash (ODA) 1/16-1/8	va		0	11.5	59	24.5	5	0	200	0 (lov	0 ver line:	0 excludi	0 ng bioti	3 te crysta	0 als)	0	93.5	-	4	0	0	200
Odamaki-5U (Od-5U)	w.gr	25-30	0	0	10	90	0	0	200	0	0	0	0	66.5	*	0	33	0	0	0.5	0	200
1/16-1/8	pm, li>sc																					
Odamaki-5M (Od-5M)	br - r.br	5	0	0.5	11.5	86.5	0.5	1	200	0	0	0	0	66	0	*	33	0	0	0	0	200
1/16-1/8	sc (li)																					
Odamaki-5L (Od-5L)	w.gr	20-25	0	0	8	91.5	0.5	0	200	0	0	0	0	76	0.5	•	23	0.5	0	0	0	200
1/16-1/8	pm, li>sc																					
Lower Odamaki tephra gro	up																					
Odamaki-4U (Od-4U)	w.gr	10-15	0	0	19	67	5.5	8.5	200	0	0	*	0	64.5	0.5	4.5	21.5	8.5	0	0.5	0	200
1/16-1/8	pm, li																					
Odamaki-4L (Od-4L)	w.gr	10-15	0	2.5	37.5	56.5	3.5	0	200	0	0	*	0	66	1	1.5	21	0.5	*	0	0	200
1/16-1/8	pm, li																					
Odamaki-3 (Od-3)	w.gr - y.gr	20-30	0	2.5	2.5	70.5	23.5	1	200	0	0	*	0	9.5	1	*	82	7	0.5	*	0	200
1/16-1/8	pm, sc, li																					
Odamaki-2 (Od-2)	w.gr - p.wh	40-50	0	1	20	77.5	1.5	0	200	0	0	*	0	71.5	1	1	26	0.5	0	0	0	200
1/16-1/8	pm, li																					
Odamaki-1 (Od-1)	y.br - y.gr	15-20	0	18.5	17	63.5	1	0	200	0	0	0	0	54	0.5	5	40	0.5	0	0	0	200
1/16-1/8	pm, li		0	2	25	69	2.5	1.5	200	0	0	0	0	52.5	1	1	41	4.5	0	0	0	200

1) Analyzed grain size: farctions between 1/8 and 1/4 mm are identified using binocular microscope ×100, and those between 1/16 and 1/8 mm are identified using polarizing microscope ×200. 2) Color and lithology: gr, gray, bl.gr, bluish gray, y.gr, yellowish gray, w.gr, whitish gray, br, brown, r.br, reddish brown, y.br, yellowish brown, or, orange, p.wh, pinkish white; pm, pumice, sc, scoria, li, lithic fragment, vs, volcanic sand, va, volcanic ash.

3) Grain composition: Gl, volcanic glass shards, Lm, light minerals (Qz, quartz, Fl, feldspar; gothic numbers indicate containing of β-quartz), Hm, heavy minerals, Rf, rock fragment, Ot, other grains. *<0.5 %

4) Heavy mineral composition: Ol, olivine, Id, iddingsite, Opx, orthopyroxene, Cpx, clinopyroxene, Gho, green hornblende, Bho, brown hornblende (including oxihornblende), Cum,

cummingtonite, Opq, opaque minerals, Bt, biotite, Zr, zircon, O, other minerals. *< 0.5 %

質な自形結晶であり,FT 年代測定試料としては非常に 良好であると判断された.

FT 年代測定は、地質年代学サブコミッションによる FT 年代測定の標準化に関する勧告(Hurford, 1990a, b)に従い、ゼータ較正(Hurford and Green, 1983) による外部ディテクター法(Danhara et al., 1991; 岩野・檀原, 1997; Iwano and Danhara, 1998)に より行った.いずれも結晶外部面の上のFT 長分布に 短いものが観察されないことから外部効果の影響を無 視できると判断して,FT 識別に有利な結晶面外部面を 利用する外部ディテクター法(ED2)を採用した.結 晶外部面のエッチングはKOH:NaOH = 1:1(モル 比)エッチャントを用い,225 ~ 227 ℃で47時間行 った.熱中性子の照射は立教大学原子力研究所回転試

表1(続き) 秩父盆地,尾田蒔面上のチバニアン期テフラ層の岩石記載的特徴

Table 1 (continued). Petrographic characteristics of the Chibanian tephra layers deposited on the Odamaki surface in the Chichibu Basin, eastern Japan.

		Peferative index (mode	(menhar)			Commention toolog	
Sample Name	This study	glass (n), orthopyroxene (γ), Kanto Ash Layers Research Group (2001)) (number) hornblende (n ₂) Sakata et al. (2012)	Suzuki and Hayakawa (1990)	Suzuki (2000, 2008)	Kanto Ash Layers Research Group (1992, 2001)	Machida and Isoda (1983)
Yasudate tephra gro	oup	and a standard second		deres titles			
Yasudato-5 (Ys-5)	γ = 1.696-1.707 (1.700-1.705) (30)				-	Tama 128 OL.Py.C.A. ¹⁾	-
Yasudate-4 (Ys-4)	n ₂ = 1.688-1.696 (1.690) (40), 1.683				-	-	-
Yasudate-3 (Ys-3)	-				-	-	-
Yasudate-2 (Ys-2)	n ₂ = 1.663-1.676 (1.666) (52) n ₂ = 1.655-1.661 (1.657) (cum) (32)	n ₂ = 1.664-1.669			-	Tama 126 (Amazake)	-
Yasudate-1 (Ys-1)	γ = 1.694-1.705 (1.700-1.702) (30)				-	Tama 125 (Gomoku kechappu)	-
Odamaki tephra gro Upper Odamaki te	up phra group					(00000000000000000000000000000000000000	
Odamaki-16 (Od-16)	n ₂ = 1.682-1.696 (1.686-1.689) (57) n ₂ = 1.699->1.710 (Bho) (8) n ₂ = 1.667-1.670 (6), 1.674-1.676 (3)				OD16	Tama 123 (Inarizushi)	-
Odamaki-15 (Od-15)	$\label{eq:n2} \begin{array}{l} n_2 = 1.684\text{-}1.698 \; (1.686\text{-}1.687, 1.692\text{-}1.694) \; (47) \\ n_2 = 1.667\text{-}1.676 \; (1.669\text{-}1.670) \; (15) \\ n_2 = 1.659\text{-}1.661 \; (\text{cum}) \; (3) \end{array}$		n ₂ = 1.665-1.671 (1.668) (30) n ₂ = 1.688-1.692 (1.690) (30)	n ₂ = 1.685-1.695	OD15 A ₄ Pm ²⁾	Tama 122 (Furikake)	-
Odamaki-13 (Od-13)	n ₂ = 1.664-1.671 (1.668) (47), 1.680-1.692 (4)	n ₂ = 1.665-1.671	n ₂ = 1.664-1.674 (1.670) (30)	n ₂ = 1.666-1.674	OD13	Tama 120	-
	n ₂ = 1.655-1.659 (1.657) (cum) (40)		n ₂ = 1.657-1.661 (1.657-1.659) (cum) (33)		Yt-hop ³⁾	(Atsuage)	
Odamaki-11 (Od-11)	n ₂ = 1.668-1.679 (1.676) (29), 1.683 n ₂ = 1.687-1.693 (8)				OD11 A ₃ Pm ⁴⁾		-
Odamaki-9 (Od-9)	n ₂ = 1.669-1.674 (1.671-1.672) (27)			n ₂ = 1.666-1.672	OD9	Tama 119	-
	n ₂ = 1.684-1.696 (1.689) (17) n ₂ = 1.660 (cum) (1)				A ₂ Pm ⁴⁾	(Akaten-bio)	
Odamaki-8 (Od-8)	n ₂ = 1.668-1.674 (1.670) (40)	n ₂ = 1.666-1.672	n ₂ = 1.665-1.672 (1.667-1.669) (29)		OD8	Tama 118	-
	n ₂ = 1.685-1.692 (1.687, 1.690) (20) n ₂ = 1.656-1.659 (6) (cum)					(Okara)	
Odamaki-6 (Od-6)	n ₂ = 1.686-1.700 (1.688, 1.692-1.694) (40)			n ₂ = 1.686-1.697	OD6 (ODA)	Tama 116	HBP [®]
	n ₂ = 1.667-1.675 (9) n ₂ = 1.659 (cum) (1)				A ₁ Pm ⁻¹ TE-5 ⁵⁾ TE-5a ³⁾		(Hachiohji Biotite Pumice)
Odamaki-5U (Od-5U)	n ₂ = 1.668-1.673 (1.670) (40)	n ₂ = 1.666-1.670 (Od-5U / Od-5L)	n ₂ = 1.665-1.671 (1.668-1.669) (30)		OD5	Tama 114 (Ham sand)	Kap-11 ⁶⁾
Odamaki-5M (Od-5M)	n ₂ = 1.668-1.673 (1.670) (40)		n ₂ = 1.667-1.672 (1.670) (30)		OD5	Tama 114 (Ham sand)	-
Odamaki-5L (Od-5L)	n ₂ = 1.668-1.672 (1.670) (40)		n ₂ = 1.666-1.673 (1.670) (30)		OD5	Tama 114 (Ham sand)	Kap-10 ⁶⁾
Lower Odamaki te	ephra group					•	
Odamaki-4U (Od-4U)	n ₂ = 1.667-1.672 (1.670) (40) n ₂ = 1.656-1.660 (1.658) (cum) (40)	n ₂ = 1.665-1.669 (Od-4U / Od-4L)	n ₂ = 1.666-1.672 (1.669-1.670) (30) n ₂ = 1.657-1.662 (1.659) (cum) (30)		OD4	Tama 113 (Sanshokupan)	Kap-9 ⁶⁾
Odamaki-4L (Od-4L)	n ₂ = 1.667-1.672 (1.669) (40) n ₂ = 1.656-1.659 (cum) (34)		n ₂ = 1.667-1.670 (1.668-1.670) (30) n ₂ = 1.657-1.661 (1.658) (cum) (30)		OD4	Tama 113 (Sanshokupan)	Kap-9 ⁶⁾
Odamaki-3 (Od-3)	$n_2 = 1.667 \cdot 1.673 (1.670) (40)$ $n_2 = 1.686 \cdot 1.703 (30)$		n ₂ = 1.668-1.676 (1.670-1.671) (30) n ₂ = 1.657-1.661 (1.658-1.659) (cum) (30)		OD3	Tama 109	-
	n ₂ = 1.655-1.659 (1.657-1.658) (cum) (40)					(nizu Jyanu)	
Odamaki-2 (Od-2)	n ₂ = 1.666-1.674 (1.669-1.671) (40) n ₂ = 1.655-1.663 (1.656-1.658) (cum) (45)	n ₂ = 1.666-1.669	$n_2 = 1.667 - 1.673 (1.670 - 1.671) (30)$ $n_2 = 1.657 - 1.662 (1.659 - 1.660) (cum) (30)$		OD2	Tama 106 (Shokupan)	Kap-6 ⁶⁾
Odamaki-1 (Od-1)	$n_2 = 1.670 \cdot 1.678 (1.673 \cdot 1.674) (40)$ $n_2 = 1.656 \cdot 1.662 (1.658 \cdot 1.659) (cum) (40)$	n ₂ = 1.665-1.670	n ₂ = 1.672-1.681 (1.675) (30)		OD1	Tama 105 (Mame mochi)	Kap-5 ⁶⁾ (Kamikayama Pumice 5)

5) Refractive indexes are measured with RIMS86/87/2000 using the thermal immersion method following Danhara *et al.* (1992), Danhara (1993), and Kamata *et al.* (1994). 6) Correlated tephra: 1) Collaborative Research Group for Yatsugatake (1988), 2) Kimura (1987), 3) Machida and Arai (2003), 4) Nakaya (1972), 5) Machida *et al.* (1974), 6) Minagawa and Machida (1971).

料棚で実施し、熱中性子照射線量の測定は標準ガラス の NBS-SRM612 および雲母を用いた. 年代値の算出 に用いるゼータ値は, ED2 = 372 ± 5 である. OD2 および OD6 とも通常の 30 個のジルコン結晶を対象と して測定した. OD6 については測定精度を高くするた め、別に150個のジルコン結晶を埋め込んだマウント を作成して高精度 FT 年代測定(檀原, 1995)を行っ た. これらの FT 年代測定手法の詳細は, Danhara et al. (1991), 檀原 (1995) を参照されたい.

結 果

1. テフラの層相と岩石記載的特徴

関東平野西縁の多摩丘陵などに分布する砂礫層は、高 位段丘面に相当する多摩面を形成しており、チバニアン 期前半に降灰したテフラ累層である多摩ローム層に覆わ れている (関東ローム研究グループ, 1956 など).多 摩面は高位の多摩Ⅰ面と低位の多摩Ⅱ面に区分され(羽 鳥・成瀬, 1957), 多摩 I 面上には多摩 I ローム層以上 のテフラ累層が、多摩Ⅱ面上にはより新しい多摩Ⅱロー ム層以上のテフラ累層が、それぞれ堆積している(関 東火山灰グループ・関東平野西縁丘陵団体研究グルー プ,1998).上鹿山第1軽石層(Kap-1:皆川・町田, 1971)の直下からはじまる多摩 I ローム層は、多数の テフラが挟在する積算層厚約40 mのテフラ累層であ り,ゴマシオ第1軽石層(皆川・町田,1971;GoP1: 町田ほか,1974)からはじまる多摩 II ローム層に覆わ れている(関東火山灰グループ・関東平野西縁丘陵団体 研究グループ,1988)関東火山灰グループ(1992)は OD16 下位に軽微な非整合面を認めて,尾田蒔ローム 層中のテフラを OD16 から上位のスコリアを主体とす るテフラ群と,OD16 より下位の軽石を主体とするテ フラ群に大別した.関東火山灰グループ(2001)によ れば,尾田蒔ローム層は上記の多摩 I ローム層に対比さ れ,前者がその上部に,後者がその中部に相当する(図 3).

本研究で明らかにした尾田蒔ローム層中のテフラの色 調,層相,層厚と,粒径 $1/8 \sim 1/16$ mmの粒子の粒子 組成,重鉱物組成,および直方輝石 (γ),普通角閃石 (n_2),カミングトン閃石 (n_2)の屈折率を表1に示す. 表1には、従来の研究におけるテフラ名との対応や広 域テフラを含む主な年代指標テフラとの対比も示した. 本研究においては,関東火山灰グループ (2001)とは 異なり,スコリアと軽石のいずれがテフラの主体である かという指標とテフラの鉱物組成の違いに基づき,尾田 蒔ローム層中のテフラを下位の尾田蒔テフラ群 (OD1 ~OD17;試料:Od-1~Od-16)と上位の安立テフラ 群 (Ys1~Ys5;試料:Ys-1~Ys-5)の2つに大別 して記載する (表1,図3).

1) 尾田蒔テフラ群 (OD1 ~ OD17)

尾田蒔テフラ群は、斜長石と石英、角閃石類(緑色普 通角閃石・褐色普通角閃石・カミングトン閃石),およ び不透明鉱物(磁鉄鉱・チタン鉄鉱・赤鉄鉱など)を主 要鉱物とし、微量~少量の黒雲母を伴うことで特徴づ けられる。尾田蒔テフラ群では、白色~黄白色で軽石 に富むテフラの重鉱物は角閃石類が主体であり、OD3, OD8, OD16 のように軽石に加えてスコリアや火山砂 もしくは火山岩片に富むテフラでは、不透明鉱物や褐色 普通角閃石の割合が相対的に多い傾向が認められる(表 1). 最下位の OD1 を除いて, 普通角閃石の屈折率 (n₂) は1.664~1.674の範囲にあり、モードは1.670前後 で類似する(図4). OD3では、褐色普通角閃石の屈折 率は n₂ = 1.686 ~ 1.703 である(表 1,図 4). さらに 高温型石英(β-石英)やカミングトン閃石の含有量の 違いから、尾田蒔テフラ群を下位尾田蒔テフラ群(OD1 ~ OD4; 試料は Od-1 ~ Od-4) と上位尾田蒔テフラ 群 (OD5 ~ OD17; 試料は Od-5 ~ Od-16) に細分した.

下位尾田蒔テフラ群は、軽鉱物として石英を比較的 多く含む.石英では、両錐形の β -石英が主体である. 重鉱物として1~5%のカミングトン閃石を含み、ご く微量の直方輝石も検出される(表1).カミングトン 閃石の屈折率(n2)は類似し、範囲は1.655~1.663、 モードは1.657~1.659である.OD1は、石英の割合 が斜長石の割合と同程度かより大きく、下位尾田蒔テ フラ群の中でも特徴的である(表1).普通角閃石の屈 折率は $n_2 = 1.670 ~ 1.678$ (モード:1.673~1.674) であり、上位の軽石質テフラに含まれる普通角閃石の屈 折率($n_2 = 1.664 ~ 1.674$)に比べて有意に高い(図4).

上位尾田蒔テフラ群には、黒雲母に著しく富む風化 の進んだ細粒火山灰からなるテフラが挟在する(鈴木, 2000). それらは、下位より順にOD6, OD9, OD11, OD15 の4層であり、それぞれの層厚は10~15 cm, 20~25 cm (黒雲母密集帯で上・下限はやや不明瞭), 5~8 cm (上位の火山砂が混交), 30~40 cm (黒雲 母密集帯で上・下限はやや不明瞭)である(表1,図3). 最上位のOD17 (Kkt) 直上の厚さ約20~30 cm 部 分にも黒雲母の密集層準が認められるが(図3),上・ 下限が不明瞭であり、黒雲母が下位のOD15からの混 入である可能性があるため、本研究ではテフラ層と認定 しなかった.

これら4層の火山灰は細粒なジルコンの自形結晶を 含有し、とりわけ OD6 は淡桃色細粒の自形結晶を多く 含む.結晶形は OD6 では長柱状が多く,他は短柱状 が多い. また, n2 = 1.686 ~ 1.700 の高屈折率を示す 暗緑~暗緑褐色で細粒の普通角閃石を含む(表1,図 4). 高屈折率の普通角閃石は OD6 で普通角閃石の 70 %以上, OD15 で同じく 50 %前後を占める. しかし, OD9やOD11では、尾田蒔テフラ群に共通する低屈折 率の普通角閃石が圧倒的に多い. 高屈折率の普通角閃石 は10%未満の含有量であり、屈折率もn2 = 1.684~ 1.696 の範囲で、モードの上限値が低くなる傾向が認め られる (表 1, 図 4). OD11 で多数を占める普通角閃 石の屈折率(n₂)は1.668~1.679の範囲でばらつき, 下位尾田蒔テフラ群の OD1 の普通角閃石の屈折率分布 と類似する(図4).一方,OD6 直上の OD8 では高屈 折率の普通角閃石の割合が相対的に高く、軽石やスコリ ア起源の普通角閃石に加えて、OD6に由来する普通角 閃石が混交している可能性を示唆している(表1,図4).

上位尾田蒔テフラ群では、OD13 を除いてカミング トン閃石の割合は1 %以下であり、黒雲母に富む4層 のテフラを除けば β – 石英もごく微量である.しかし、 OD13 は β – 石英を少量含み、カミングトン閃石の割 合が9 %と大きく、下位尾田蒔テフラ群と類似した岩 石記載的特徴を示す(表1).カミングトン閃石の屈折 率も n₂ = 1.655–1.659 (1.657) と類似する(表1,

Figure 4. Histograms of refractive indices of orthopyroxene (γ), hornblende (n₂), and cummingtonite (n₂) phenocrysts from the Chibanian tephra layers on the Odamaki surface.

表2 尾田蒔火山灰層(OD6/ODA)および尾田蒔第2軽石層(OD2)のジルコンフィッション・トラック年代測定結果.

Table 2. Results of zircon fission-track dating of samples from the Odamaki Ash (OD6/ODA) and Odamaki-2 Pumice (OD2) beds.

TT 1 1		Spontaneous tracks		Induced tracks		Dosimeter			- (2)	T T	A ge (ka)	
Sample Name	No. of crystals	ρ _s N		ρ_{i}	N	ρd	NA	r	$\Pr(\chi^2)$	(ppm)	Age (Ka)	
	er ystais	(cm^{-2})	IN _S	(cm ⁻²)	IN _i	$(\times 10^4 \text{ cm}^{-2})$	INU		(70)	(ppm)	error $(\pm 1\sigma)$	
OD6 (Od-6a)	150	3.782×10 ⁴	164	3.387×10 ⁶	14688	8.570	2633	0.208	78	310	356 ± 29	
OD6 (Od-6b)	30	3.56×10 ⁴	26	3.29×10 ⁶	2402	8.570	2633	0.343	93	310	350 ± 70	
OD2 (Od-2)	30	1.16×10 ⁴	10	6.98×10 ⁵	604	8.314	2554	0.698	70	70	510 ± 160	

(1) Analyses are performed by the external detector method using geometry factors of 1 for $2\pi/2\pi$ (ED2).

(2) ρ and N are the density and total number of counted fission tracks, respectively.

(3) Ages were calculated using a dosimeter glass NBS-SRM612 and calibration factor for ED2 ($\zeta_{ED2} = 372\pm5$) after Danhara *et al*. (1991).

(4) r is the correlation coefficient between ρ_s and ρ_i

(5) $Pr(\chi^2)$ is the probability of obtaining the χ^2 -value for v degree of freedom (v = number of crystals-1).

(6) Age: T = In $(1+\lambda_D \cdot \zeta \cdot \rho_d \cdot \rho_s / \rho_i) / \lambda_D$, where $\lambda_D = 1.55125 \times 10^{-10} / \text{ yr and } \zeta$ is a zeta value.

(7) Error: $\sigma = T \cdot [1/\Sigma N_s + 1/\Sigma N_i + 1/\Sigma N^d + (\sigma zeta/\zeta)^2]^{1/2}$ for ED2 method.

(8) Samples are irradiated using the TRIGA MARK II nuclear reactor at St. Paul's University (Rikkyo Daigaku), Japan.

図 4). 一方, OD16 は高屈折率の普通角閃石を主体と するが, その屈折率は n² = 1.682 ~ 1.696 (1.686 ~ 1.687) であり, 直下の OD15 のそれに比べてやや低 い (表 1, 図 4). さらに, 褐色~赤褐色の普通角閃石 を少量含むほか, 直方輝石・単斜輝石と, カンラン石や その二次生成鉱物であるイディングサイトを微量~少量 含み, 上位の安立テフラ群への漸移的な岩石記載的特徴 を示す (表 1). また, ヒル石状の結晶を含む黒雲母が 20 ~ 40 %と多く含まれ, 直下の OD15 に由来する黒 雲母が混交している可能性が高い.

2) 安立テフラ群(YS1 ~ YS5)

安立テフラ群は、暗褐色火山砂と、黄白色軽石が散在 する赤褐色スコリアの互層からなる厚さ 30 ~ 40 cm の YS1、白色~黄白色軽石を主体として赤褐色スコリ アと青灰色岩片を少量含む厚さ 10 ~ 20 cm の YS2、 白色~黄白色軽石が密集し、赤褐色スコリアと青灰色岩 片を伴う厚さ 10 ~ 20 cm の YS3 と厚さ約 30 cm の YS4、厚さ 30 ~ 90 cm と層厚の側方変化が大きく、 黒褐色~暗赤褐色のスコリアと火山砂からなる YS5 と いうように、層相の異なる特徴的なテフラから構成され る (表 1, 図 3).

YS1, YS3, YS4は,風化が進んでいて不透明鉱物 の割合が50%以上と高く,単斜輝石と直方輝石,カン ラン石とイディングサイト,および普通角閃石を少量含 む.最上位のYS5は、これらの3層に比べると風化が 進んでおらず、25%前後のカンラン石,直方輝石,不 透明鉱物を主体として、12%前後の普通輝石と2%程 度の普通角閃石を伴う特徴的な重鉱物組成を示す(表 1).YS1とYS5では、直方輝石の屈折率(γ)はそれ ぞれ、1.694~1.705(1.698~1.703)および1.696 ~ 1.707 (1.701 ~ 1.705) であり, YS5 が若干高い 値を示す(表1,図4). YS3とYS4には、少量であ るが暗緑~暗緑褐色で長柱状の普通角閃石が6.5~11 %含まれ、YS4ではn2 = 1.688~1.696 (1.690)の 高屈折率を示す.

一方、YS2は29~36%の普通角閃石と約50%の 不透明鉱物を主体とし、5%以上のカミングトン閃石 を含む(表1).軽鉱物中の β -石英の割合も7%以上 と高く、下位尾田蒔テフラ群の軽石に富むテフラと類 似した鉱物組成を有する。普通角閃石の屈折率は $n_2 =$ 1.663~1.674(1.665~1.671)で下位尾田蒔テフラ 群のそれよりやや低く、カミングトン閃石の屈折率は $n_2 =$ 1.655~1.661(1.657)で下位尾田蒔テフラ群と ほぼ同じ値を示す(表1,図4).

2. OD2 と OD6 (ODA) のジルコン FT 年代

OD2 から抽出したジルコン結晶から 30 個をランダ ムに選んで測定した結果を表 2 に示す. これら 30 粒子 の測定データは、1 粒子毎の自発および誘導 FT 数が少 ないため粒子年代のバラツキは大きい. しかし、 χ^2 検 定には合格し,統計上は問題点が認められない. ウラン 濃度が他の大多数の粒子の 10 倍以上となる特異な結晶 が1粒子あったが、粒子年代値は 0.35 Ma と相対的に 若く、結晶の色調や晶癖も異質性を示さない. このため 測定した 30 粒子を同一テフラ起源に属するものとみな して、全粒子の加重平均年代として 510 ± 160 ka (誤 差は 1 σ)を算出した. 本試料では計数面積を広く取 れる粗粒なジルコン結晶が多かったが、ウラン濃度が 70 ppm と小さかったため測定誤差が 31 % と大きくな った.

OD6から抽出したジルコン結晶から、同様に30粒

子を選んで測定した結果と、別途 150 粒子を選んで測 定した高精度 FT 年代測定の結果を、表 2 に示す。い ずれも淡桃色の均質なジルコン結晶であり、ウラン濃度 も 310 ppm と比較的高かったが、若い年代試料であっ ため 1 粒子あたりの誘導 FT 数は少なかった. 30 粒 子の測定では、粒子年代のバラツキは大きいが χ^2 検定 に合格し統計上は問題点が認められないことから、全粒 子の加重平均年代として 350 ± 70 ka を得た. ジルコ ン結晶 150 粒子を対象とした測定でも、粒子年代のま とまりは良くないものの、 χ^2 検定に合格して統計上は 問題点が認められない. このため全 150 粒子を対象と して、356 ± 29 ka の加重平均年代を算出した.

考 察

1. OD1の岩石記載的特徴と南関東地域のテフラとの対比

尾田蒔礫層を覆う最下位のテフラである OD1 は,鉱 物組成や重鉱物組成が関東火山灰グループ(2001)と 一致する.しかし,普通角閃石の屈折率は n2 = 1.670 ~1.678(1.673~1.674)であり,関東火山灰グル ープ(2001)の報告(n2 = 1.665~1.670)とは明ら かに異なり、坂田ほか (2012) による $n_2 = 1.672 \sim$ 1.681 (1.675)の測定結果とほぼ一致する(表 1).カ ミングトン閃石の屈折率は $n_2 = 1.656 \sim 1.662$ (1.658 ~ 1.659)で、上位の OD2 のそれと範囲は同じである がモードはやや高い、坂田ほか (2012)では、OD1 に おけるカミングトン閃石の含有や屈折率は報告されてい ない、これらの点から、OD1 の岩石記載的特徴は、本 研究により代表されるべきであると考える。

町田・磯田 (1983) は、OD1を皆川・町田 (1971) および町田 (1973)の上鹿山第5軽石 (Kap-5)に対 比した.皆川・町田 (1971)は、重鉱物組成や層位・ 層相が Kap-5と程久保第1軽石 (Hdp-1)では良く似 るものの、両者の強磁性鉱物の熱磁気特性が異なるこ とから、Kap-5と Hdp-1 が一連の噴火における異な る降下ユニットである可能性を示唆している(図5). OD1と Kap-5は、いずれも β – 石英を多く含み、少 量のカミングトン閃石を伴う点で特徴的である(皆川・ 町田、1971). Kap-5の直上に堆積する上鹿山第6軽 石 (Kap-6:町田、1973)は、皆川・町田 (1971) では程久保第2軽石 (Hdp-2)に対比されており、さ らに層相と鉱物組成の一致から OD2に対比されてい る(町田・磯田、1983). Hdp-2の普通角閃石の屈 折率は n₂ = 1.667 ~ 1.671 (1.670)、カミングトン

図5 尾田蒔テフラ群と関東地方西縁部の多摩Iローム層中のチバニアン期テフラ層との対比.

Figure 5. Correlation of the Chibanian tephra layers between the Odamaki tephra group and the Tama I Loam Formation in the western part of Kanto District, eastern Japan.

関石の屈折率は n2 = 1.658 ~ 1.661 (1.659) である (町田ほか, 1974). OD2 は, 普通角閃石で 1.666 ~ 1.674 (1.669 ~ 1.671), カミングトン閃石で 1.655 ~ 1.663 (1.656-1.658) の屈折率 (n2) であり (表 1), 両者はよく一致することから, Hdp-2 と OD2 の対比 を追認できる. このように OD1 と OD2 をセットで対 比できることから, OD1 が Kap-5 に対比される可能性 は高いと考えられる (図 5). さらに Kap-5 について普 通角閃石やカミングトン閃石の屈折率が測定されれば, 両者の対比を確認できるであろう.

2. 黒雲母含有火山灰と大町 APm テフラ群との対比

鈴木(2000)は、主成分化学組成が一致するチタン磁鉄鉱を含むことから、4層の黒雲母含有火山灰 (OD6, OD9, OD11,およびOD15)が全てAPmテ フラ群に対比でき、個々のテフラの対比については広 域テフラである Kkt と八ヶ岳火山起源のYt-hopとの

(1) Suzuki (2000), (2) Suzuki and Hayakawa (1990), (3) Kanto Ash Layers Research Group (1992). Odamaki Ash, Okara, Akaten biotite, Atsuage, Furikake, Inarizushi, and Nuka1 tephra layers correspond to Tama116, Tama118, Tama119, Tama120, Tama122, Tama123, and Tama124, respectively by Kanto Ash Layers Research Group (2000). As for other tephra layers, see Appendix Table 1. Tephra layers in red color with parentheses are not correlated to any tephra layers on the Odamaki Hill in this study.

図6 中部・関東地方のチバニアン期テフラ層と大町 APm テフラ群との対比研究の比較.

Figure 6. Comparison of the previous correlations of the Chibanian tephra layers in Chubu and Kanto districts, eastern Japan, with the Omachi APm tephras; data from this study are included.

層位関係に基づき,OD6をHBP,TE-5およびA1Pm に,OD9をA2Pmに,OD11をA3Pmに,OD15を A4Pmに,それぞれ対比している(図6A).しかし, OD13とYt-hopの対比に問題があることが指摘されて いる(坂田ほか,2012)ため,本研究では鈴木・早川 (1990)や鈴木(1992)と同様に,テフラの層相や岩 石記載的特徴に基づいて個々のテフラとの対比を追認す る.

4層の黒雲母含有火山灰は、Kkt に対比される OD17 より下位に層位することから A1Pm ~ A4Pm に対比さ れる(鈴木, 2000). 各テフラの層厚の相違は、模式地 における APm テフラ群の層厚の相違(中谷, 1972; 木村, 1987; 鈴木, 1992) と一致し、OD11 と A3Pm が最も薄層である. テフラ間の火山灰土の層厚 も、OD11 ~ OD15 間とA3Pm ~ A4Pm 間で最も薄い. これらは、いずれも APm テフラ群を特徴づける高屈折 率の普通角閃石(鈴木・早川, 1990)を含み、その含 有量は OD6 と OD15 で多く、OD9 と OD11 では微量 である(表1,図4). ジルコン結晶では、OD6 には淡 桃色細粒の長柱状結晶が多く、他のテフラでは無色透明 の短柱状結晶が多い.

鈴木 (1992) は、模式地である長野県長野市大岡中 牧樺平において APm テフラ群の層相や岩石記載的特 徴を詳細に記載し、A1Pm が全体に風化が進み細粒な 結晶からなること, A3Pm では黒雲母・石英が目立つ こと、A4Pm 最下部で普通角閃石の屈折率の上限が最 も高くなることなどを明らかにしている. また, A1Pm ~ A₃Pm に含有されるジルコン結晶には特徴があり, A₂Pm と A₃Pm では無色透明かそれに近い短柱状結晶 が多いのに対して、A1Pm では淡桃色で短柱状結晶は 必ずしも多くない(加藤・檀原, 1987). 上位尾田蒔テ フラ群においても, OD6 は風化が進んで粘土化した火 山灰であり、黒雲母や石英、ジルコンなどの細粒で均質 な結晶に富み、ジルコン結晶は淡桃色で長柱状を主体 とする. OD6 と OD11 は黒雲母が多く, OD15 は n2 = 1.692 ~ 1.694 にモードを持つ高屈折率の普通角閃 石を多く含む(表1,図4).このように、模式地に風 成堆積する APm テフラ群の特徴は尾田蒔テフラ群にお いても認識できる. したがって, OD6 と A1Pm, OD9 とA2Pm, OD11とA3Pm, OD15とA4Pmが, それ ぞれ対比される確度は高いと考えられる (図 6).

なお、OD17 (Kkt) 直上には黒雲母密集層準が確認 され、関東火山灰グループ (1992) や斉藤・クリスタル・ アッシュ (大町 APm, BP) 研究会 (1996) の「いな りずし層準」(図 6B) に相当する.本層準は Kkt 上位 に層位し、A5Pm もしくは A6Pm (矢口ほか、1992)、 あるいは両テフラの混交層に対比される可能性がある が、テフラ層準の確認や岩石記載的特徴の分析を含めて、 その対比は今後の課題としたい.

3. Yt-hop との対比

APm テフラ群との対比に基づけば、OD13 は A₃Pm の直上、A₄Pm の下位に層位する.鈴木・早川(1990) や鈴木(2000) は OD13 を Yt-hop に対比した(図 6A).八ヶ岳団体研究グループ(1988) によれば、Ythop は不透明鉱物と単斜輝石、直方輝石が多く、角閃 石類とジルコンを含む.一方、OD13 は普通角閃石が 70%以上と多く、次いで20%前後の不透明鉱物と9 %程度のカミングトン閃石を含み(表1)、重鉱物組成 が明らかに異なる.風化により輝石類が消失した可能性 を完全には否定できないが、坂田ほか(2012)が指摘 するように、重鉱物組成からは OD13 を Yt-hop に対 比することはむずかしい.

八ヶ岳東麓に分布する B₀ テフラ(八ヶ岳団体研究グ ループ, 1988)はOD6に対比され(斉藤・クリスタ ル・アッシュ(大町 APm, BP)研究会, 1996),北 関東に分布するテフラ、クレンザー(中村・高崎地学愛 好会, 1989) も OD6 に対比可能とされている(鈴木・ 早川, 1990). このことから Bo とクレンザーは、とも に A1Pm に対比可能である(図 6B). Boの上位には, B1, B2, B3 (飯島・塩川グループ, 1967) という黒雲 母と石英に富むテフラ(クリスタル・アッシュ)が層位し、 B1 直上に Yt-hop が堆積する(八ヶ岳団体研究グループ, 1988). 鈴木・早川 (1990) は、Bo を A1Pm、B1 を A₂Pm, B₂をA₃Pm に, それぞれ対比した (図 6A). しかし、上記の対比によれば B1 と B2 は OD9 と OD11 にそれぞれ対比されることとなり、B1~B2 (OD9~ OD11) 間に堆積する Yt-hop が、B2 (OD11) より上 位の OD13 に対比されて層序の斜交が生じる. この点 からも、OD13をYt-hopに対比することはむずかし い. 鈴木 (2000) は、八ケ岳東麓において Yt-hop が A₃Pm 直上に堆積し、Yt-hop ~ Kkt 間には A₄Pm の みが堆積するとして OD6 ~ OD15 と A1Pm ~ A4Pm の対比を考え、層序の斜交関係を解決している(図 6C). しかし、八ケ岳東麓における層序の詳細や Bo~ B₃とAPm テフラ群との関係は明らかにされていない.

斉藤(2000)は、TE-5やHBPと、それらに対比 可能な下総層群地蔵堂層中のJ4テフラ(徳橋・遠藤、 1984)の直上に普通角閃石の多い軽石質テフラ(それ ぞれTE-5up,HBPup,J4upと新称)が堆積するこ とを示し、TE-5、HBP、J4に低屈折率の普通角閃石 が含まれるとする岩石記載的特徴(町田ほか、1974) は、上位の軽石質テフラが混入した結果、それらに含ま れる普通角閃石の屈折率が測定、記載されたことによる とした.またBo、クレンザー、OD6の岩石記載的特徴 は、これらが上記の軽石質テフラの分布域外にあると考 えることで説明でき、Bo、OD6、HBP、TE-5、およ びJ4が APm テフラ群の下位に層位する同一のテフラ であり、酸素同位体ステージ(MIS)11のピーク直後 に降灰した広域テフラであると考えた(図 6B).さら に、B1~B3などのクリスタル・アッシュを、APmテ フラ群に対比した.斉藤・クリスタル・アッシュ(大町 APm、BP)研究会(1996)は、B0~B1間に新たに クリスタル・アッシュを見出し、B0.5と命名して OD9 に対比している(図 6B).

町田・新井(2003) も、TE-5を下位のTE-5aと

上位のTE-5bに区分し,TE-5aがA1PmとA2Pm (BoとB1)の混交層に対比され,TE-5bがYt-hopお よび尾田蒔丘陵でOD6の約50 cm上位にある軽石層 (OD8)に対比されると述べている(図6D).また,B2 をA3Pmに対比している.一方,中里・檀原(2005)は, 火山ガラスの主成分組成の相違からTE-5b(TE-5up) をYt-hopに対比できないことを明らかにし,TE-5b の給源が黒富士火山である可能性を指摘している.

尾田蒔テフラ群では,カミングトン閃石や高屈折率の 普通角閃石が下位層準のテフラからの混入であり,さ らに風化により輝石類の大半が消失したと考えれば,

図6(続き) 中部・関東地方のチバニアン期テフラ層と大町 APm テフラ群との対比研究の比較.

Figure 6 (continued). Comparison of the previous correlations of the Chibanian tephra layers in Chubu and Kanto districts, eastern Japan, with the Omachi APm tephras; data from this study are included.

OD8 の岩石記載的特徴(表1)は必ずしもOD8とYthopとの対比を否定するものではない.しかし,本研 究で追認した A₂Pm (B_{0.5}?)に対比されるOD9や A₃Pm (B₁)に対比されるOD11との層位の矛盾は解 決されないままであり(図 6D),OD8をYt-hopに対 比することはむずかしい.したがって,現状では尾田 蒔テフラ群にYt-hopに対比可能なテフラが認められ ないと考えることが妥当である.ただし,OD11では A₃Pm 起源とは異なる低屈折率の普通角閃石が優占し, その屈折率は n² = 1.668 ~ 1.679 (1.676)と,OD1 を除く他のテフラに比べてやや高い値を示す(図 4). このような普通角閃石は直上の火山砂層(OD12)から 混交した可能性が高いと判断したが,TE-5(TE-5aと TE-5b)のように,Yt-hopの薄層が混交している可能 性があるのかもしれない.

4. A1Pm の噴出年代

A1Pm は、OD6 (ODA), HBP, TE-5 (TE-5a), および J4 の各テフラに対比された (図 6). 表 3 には、 本研究による OD6 の FT 年代に加えて、ODA、HBP, TE-5、J4、および犬吠層群最上部に挟在する Ty1a テ フラ (中里・佐藤, 1998)から得られた FT 年代を示した. これらの FT 年代は、全て本研究と同一の手法と機関に より測定され、全てゼータ較正が施されている. Ty1a は町田・新井 (2003) の TE-5a に対比されており (中里・ 佐藤、1998)、ジルコン結晶 133 粒子を対象とした高 精度 FT 年代が得られている (中里・檀原, 2005).

OD6(本研究)とODA(町田, 1996)に関する3 つの FT 年代は、尾田蒔丘陵の同一テフラから得られて おり, 誤差範囲(1 σ)内で一致する. 3者の加重平均 年代は 364 ± 24 ka (誤差 1 σ, 粒子数 210 個), ジ ルコン結晶の平均 U 濃度は 313 ppm である. HBP, J4, Ty1a も誤差範囲(1 σ) で一致する FT 年代が 得られている(表 3). それらの加重平均年代は 400 ± 38 ka (誤差1σ, 粒子数193 個) であり, 中央値は 古いが OD6 の FT 年代とは誤差範囲内で一致し、ジル コン結晶の平均U濃度(313 ppm)も一致することか ら、テフラ対比とは整合的である. そこで、これら全て の加重平均年代を求めると、遠隔地のA1Pm について 375 ± 21 ka (誤差 1 σ, 粒子数 403 個, 平均 U 濃度 313 ppm)のFT年代が得られる(表3). これは,給 源近くの A1Pm について同一の手法,機関で測定され た 2 つの FT 年代の加重平均 (398 ± 36 ka: 誤差 1 σ, 粒子数 138 個, 平均 U 濃度 290 ppm) や, 390 ± 35 ka(粒子数150個)という別手法で得られたFT年代 (伊藤, 1999) とも誤差範囲内で一致する(表 3). FT 法とは異なる 388 ± 50 ka の RITL 年代 (Tsukamoto et al., 2007) やジルコン結晶を用いた 375 ± 13 ka の(U-Th) / He 年代(Ito and Danišík, 2020)(誤 差はいずれも2σ)とも, 誤差範囲内で良く一致する. したがって, A₁Pm の噴出年代は, 鈴木(2000)や中里・ 檀原(2005)が指摘するように 350 ~ 400 ka の範囲 に入る可能性が高いと考えられる.

放射年代とは別に、A1Pmの噴出年代には以下のよ うな年代制約が指摘されている. 1) TE-5a は多摩 T-e 面(町田ほか,1974)の離水後に降下したテフラであり、 多摩 T-e 面は MIS11 の海進期に形成された(町田・新井、 2003);2) 犬吠層群中では Ty1a の直下に石灰質ナン ノ化石 Pseudoemilliania lacunose の絶滅層準(410 ka:高山ほか、1995)がある(中里・檀原、2005); 3) 地蔵堂層中部の J3 テフラ直上にある地蔵堂化石帯 (坂倉, 1935) は亜熱帯的な貝化石群集から構成され, その比較的狭い範囲で暖流系種の有孔虫が多産するピー クが認められる. J4 は本化石帯直上で,海域の浅化が 進み,寒冷系種が増え始める層準に挟在する(徳橋・遠藤, 1984);4)この暖流系種の有孔虫が多産するピークは MIS11.3 に対比されている(町田, 2008);5) 八ヶ岳 北麓〜東麓に分布する南佐久層群最下部層では植物遺体 や花粉化石から山地帯上部の気候が推定されており(伊 東ほか、1988)、B2 (A3Pm) ないしB3 (A4Pm もし くは A5Pm)の降灰層準で気候が寒冷化した可能性が高 いとされる(近藤・八ヶ岳団体研究グループ, 1992); 6) 上総層群藪層中の Yb1 テフラは A4Pm に対比され, その層位は Kkt 下位の MIS10.2 付近と推定される(町 田・新井, 2003;鈴木, 2003);7) 関東地方以西の日 本列島では、MIS11の最暖期(MIS11.3)に相当する 中部更新統は、アカガシ亜属の花粉化石が多産すること で特徴づけられる(本郷, 2009;楡井, 2017など). 関東平野中央部で掘削された GS-KS-1 コアの花粉化石 群集(中澤ほか, 2009)では、Ty1a(A1Pm) 層準は ブナ属が優占し、アカガシ亜属の産出は3%未満と低率 であり、Ty1aが MIS11.3 よりやや遅れて降灰したこ とが示唆される.

これらの年代制約から、A₁Pm は MIS11.3 のやや後 で、MIS11 中に噴出した可能性が最も高いと考えられ る. MIS11.3 や MIS11/10 の天文層序年代は 405 ka および 375 ka とされている(Lisiecki and Raymo, 2005)ので、年代制約から推定される A₁Pm の噴出年 代は 380 ~ 400 ka の範囲とみられる.本研究で示し た 375 ± 21 ka という A₁Pm の高精度 FT 年代はこ の年代範囲とも重なり,整合的である.鈴木 (2000) は、 OD6 が A₁Pm, HBP, TE-5、J4 に対比できるとし、 地蔵堂層中の J4 の層位および地蔵堂層が MIS11 の間 氷期に堆積した海成層であること(町田ほか、1980 な ど)から、その噴出年代は 380 ~ 410 ka であろうと **表3** 尾田蒔火山灰層(OD6/ODA)とそれに対比される A₁Pm などのテフラ層,および尾田蒔第2 軽石層(OD2)とそれに対 比されるテフラ層のゼータ較正を用いたジルコンフィッション・トラック年代.

Table 3. Zircon fission-track ages based on zeta calibration for the Odamaki Ash Bed (OD6/ODA) and tephra layers correlated with it, such as A1Pm, and those for the Odamaki-2 Pumice Bed (OD2) and correlated tephra.

Tanhra nama	Age	Error	No. of	U-content	Reference			
repiira name	(ka)	(1σ)	crystals	(ppm)	Reference			
OD6 (Od-6a)	350	70	30	310	This study			
OD6 (Od-6b)	356	29	150	310	This study			
Weighted mean	355	27	180	310				
ODA	410	60	30	320	Machida (1996)			
Weighted mean								
OD6 / ODA	364	24	210	313				
HBP (= TE-5a)	430	90	30	290	Suzuki et al. (1998)			
J4 (= TE-5a)	350	80	30	340	Danhara et al. (1999)			
Ty1a (= TE-5a)	410	50	133	310	Nakazato and Danhara (2005)			
Weighted mean								
HBP = TE-5a	400	38	193	313				
Weighted mean								
OD6 (ODA) = HBP = TE-5a	375	21	403	313				
A ₁ Pm	470	80	30	280	Suzuki et al. (1998)			
A₁Pm	380	40	108	300	Danhara et al. (1999)			
Weighted mean								
A₁Pm	398	36	138	290				
A₁Pm	390	35	150	-	lto (1999)			
A ₂ Pm	330	40	108	300	Danhara et al. (1999)			
A ₃ Pm	370	30	108	310	Danhara et al. (1999)			
OD11 (= A ₃ Pm)	380	70	30	320	Machida (1999)			
OD2 (Od-2)	510	160	30	70	This study			
HdP-2	400	170	29	40	Suzuki et al. (1998)			
Weighted mean	400	400	50					
OD2 = HdP-2	460	120	59	55				

All fission-track ages except for the age of A_1 Pm by Ito (1999) were obtained using the same method and procedure by Kyoto fission-Track Co. Ltd.

述べた. その後,町田・新井 (2003) や町田 (2008) は TE-5 (A₁Pm)の噴出年代を 350 ~ 360 ka,鈴木 (2008) は OD6 (A₁Pm)の噴出年代を 360 ~ 380 ka としている.本研究の検討からは,前 2 者はやや若 すぎる推定年代であり,鈴木 (2000, 2008)の推定噴 出年代が妥当であったと考えられる.

5. 尾田蒔面の形成年代

鈴木 (2000) は A1Pm ~ Kkt 間の火山灰土層の堆 積速度を一定と仮定し,それを外捜して OD1 や OD2 の噴出年代を 45 ~ 50 万年前であると推定した.これ に基づいて鈴木 (2008) は,尾田蒔面の形成 (離水) 年代を約50万年前の MIS13/12 境界付近であるとした. これに対して高木ほか (2000) は、HBP について得ら れていた 340 ~ 520 ka の FT 年代 (鈴木ほか、1998 など)から、尾田蒔面は MIS12 の氷期に堆積した砂礫 層が MIS11 の間氷期に下刻されて形成された気候段丘 であり、その離水期を MIS12 末であると考えた.本研 究による OD2 とそれに対比される HdP-2 の FT 年代 (鈴木ほか、1998)の加重平均年代も460±120 ka と誤差が大きく (表 3)、テフラの FT 年代だけから尾 田蒔面の形成年代を限定することはむずかしい.しか し、Kkt (OD17)の年代を330~340 ka (町田・新 井、2003)、A1Pm (OD6)の噴出年代を前述のよう に 380~400 ka として鈴木 (2000)と同様に OD2 の噴出年代を見積ると420~480 ka となり、OD2 の 加重平均 FT 年代と良く一致する.OD5 直下から OD4 直下までの層準では火山灰土層の粘土化とクラック帯の 発達が著しく(関東火山灰グループ,1992),この層準 が MIS11 の最温暖期に対比され、さらに下位の OD2 や OD1 は MIS12 に噴出したと推定される.そして、 尾田蒔礫層は OD1 降灰時までに堆積をほぼ終えている ことから、尾田蒔面は MIS12 中に離水していた可能性 が高いと考えられる.

秩父盆地東端の曽根坂付近には風化の進んだ火山灰 質の粘土・シルト層と砂礫層の互層が分布し, 尾田蒔 礫層と同時異相の堆積物とされている(町田・井口、 1952:町田・磯田, 1983;清水・堀口, 1994など). この粘土・シルト層からはトウヨウゾウに対比される 可能性が高い旧ゾウ化石が産出した(藤本, 1936).ト ウヨウゾウは、約63万年前のMIS16の海面低下期に 朝鮮半島との陸橋を通じて日本列島に移入し、約57万 年前の MIS15.1 には絶滅したと考えられている(小 西・吉川, 1999). したがって, 旧ゾウ化石とトウヨウ ゾウとの対比が確実であれば, 尾田蒔礫層の堆積期は MIS15の約60万年前まで遡ると考えられる. 尾田蒔 礫層は、秩父盆地のほぼ全体に広がる複合扇状地を形成 していたと推定されており(町田・磯田, 1983)、中・ 低位の河成段丘構成層に比べて礫層内の層相変化が著し く、堆積時の河川環境が大きく変動していたと考えられ ている (町田・井口, 1952). このような特徴は, 尾田 蒔面が MIS12 という単一の氷期に形成された気候段丘 ではなく、より長期にわたり形成された河成面であるこ とを示唆している.以上のことから、尾田蒔面は約50 ~ 60 万年前の MIS13 ~ MIS15 に形成され,約 42 ~ 48万年前の MIS12 にはすでに下刻され、段丘化して いたと考えられる.

まとめ

関東平野西部,秩父盆地の尾田蒔ローム層に挟在する 17層のテフラの粒子組成・重鉱物組成,直方輝石・普 通角閃石・カミングトン閃石の屈折率などの岩石記載的 特徴を明らかにして OD1 テフラの岩石記載的特徴を確 立し,OD1,4層の黒雲母含有火山灰(OD6,OD9, OD11,および OD15),および OD13のテフラ対比を 再検討した.また,OD2や OD6のゼータ較正された ジルコン FT 年代測定を行い,その結果と関東地方で AiPm に対比されたテフラについて同一の手法,機関 で測定された FT 年代を総合して,AiPm の噴出年代 を推定した.さらに OD2の FT 年代などを加味して, 高位段丘である尾田蒔面の形成年代を考察した.これら の結果は以下のようにまとめられる.

 OD1 は β – 石英やカミングトン閃石を相対的に多 く含み,普通角閃石の屈折率が OD2 など他の軽 石質テフラよりもやや高く特徴的である.そして, このような岩石記載的特徴の一致から,OD1は Kap-5テフラに対比可能である.

- 岩石記載的特徴の一致や Kkt との層位関係などから、OD6、OD9、OD11、OD15 の 4 層 が 大 町 APm テフラ群の A1Pm、A2Pm、A3Pm、A4Pm にそれぞれ対比できることが確認された.一方、重 鉱物組成や APm テフラ群との層序関係の違いから、OD11 の上位に堆積する OD13 を Yt-hop に 対比することはむずかしい.
- OD2から510±160 ka (誤差1σ, 平均U濃度70 ppm), OD6から350±70 kaおよび356±29 ka (いずれも誤差1σ, 平均U濃度310 ppm)のジルコンFT年代が得られた.
- 4) これら OD6 のジルコン FT 年代や、これまでに 同一の手法、機関により得られている関東地方で A1Pm に対比されたテフラのジルコン FT 年代を 総合し、A1Pm について 375 ± 21 ka (誤差 1 σ, 粒子数 403 個、平均 U 濃度 313 ppm)の加重平 均 FT 年代を得た.
- 5) この FT 年代は、酸素同位体比層序上の位置や生物 指標などによる年代制約を考慮した A1Pm の推定 噴出年代である 380 ~ 400 ka と整合的である.
- 高位段丘・尾田蒔面は約 50 ~ 60 万年前の MIS13 ~ MIS15 に形成され, MIS12 の約 42 ~ 48 万年 前にはすでに離水 (段丘化) していたと推定される.

本研究では,層相・層序や岩石記載的特徴を総合的に 解釈し、4層の黒雲母含有火山灰と大町 APm テフラ群 の個々のテフラとの対比や、Yt-hop との対比を再検討 した.しかし、重鉱物組成や普通角閃石の屈折率などの 岩石記載的特徴は各テフラで類似することから、チタ ン磁鉄鉱(鈴木、2000)に加えて普通角閃石の主成分 化学組成を分析する(例えば、竹下、2004;竹下ほか、 2005;Kotaki et al., 2011)など、テフラ対比の確度 を高めるための新たな手法を導入する必要があろう.

尾田蒔丘陵のテフラ露頭では、大町 APm テフラ群だ けでなく、八ヶ岳火山や黒富士火山から噴出したチバ ニアン期テフラを数多く観察できる。これらのテフラ の噴出期は MIS8 ~ MIS12 の長期にわたり、MIS9 や MIS11 の間氷期層準と火山灰土の土壌化との関係を検 討するうえでも重要である。尾田蒔丘陵はジオパーク秩 父のジオサイトの1つとされており、丘陵上にあるテ フラ露頭が今後も保存・活用されていくことを期待する。

謝 辞

本稿は二名の査読者の適切な指摘により改善された. 本研究は,筆頭著者の加藤茂弘が東京大学地理学教室に 在学中から細々と継続してきた研究成果の一部である. 同教室在学中には現地やゼミナール等で^故阪口 豊,大 森博雄,^故米倉伸之ほかの指導教官の先生方,先輩,同輩, 後輩諸氏から議論とご教示を頂いた.とりわけ渡辺満久, 奥村晃史,鈴木康弘,高田将司の先輩諸氏からは研究内 容のみならず,研究生活を続けるうえでも大切なご示唆 を頂き,激励頂いた.2021年3月末の定年退職の区切 りを終えて,これらの方々に厚くお礼申し上げます.

和文要旨

秩父盆地の尾田蒔面上に堆積するチバニアン期テフラ 群から17層のテフラ試料を採取し、粒子組成・重鉱物 組成や直方輝石・角閃石類の斑晶鉱物の屈折率を分析し てテフラの対比を再検討した.最下位の OD1 テフラは, これまでの記載と異なる岩石記載的特徴を示したが、関 東地方西部の Kap-5 テフラと対比可能であった.4層 の黒雲母に富む細粒火山灰 (OD6, OD9, OD11, お よび OD15) は大町 APm テフラ群の A₁Pm ~ A₄Pm にそれぞれ対比されたが、八ヶ岳火山東麓の Yt-hop テ フラに対比可能なテフラは見出せなかった. また OD2 では 510 ± 160 ka の, OD6 では 350 ± 70 ka およ び 356 ± 29 kaの,ジルコン結晶を用いたフィッショ ン・トラック (FT) 年代 (誤差は各1σ) を得た. さ らにこれまで同一の手法,機関で実施された全てのFT 年代を総合し、関東地方に分布する A1Pm の加重平均 FT 年代として 375 ± 21 ka を求めた. これら OD2 や A₁Pm (OD6) の FT 年代などから, 尾田蒔面は約 500~600 ka に形成されたと推定される.

引用文献

- 檀原 徹 (1993) 温度変化型屈折率測定法. 日本第四紀学会(編), 第四紀試料分析法 2. 研究対象別分析法. 東京大学出版会, 東京, pp. 149–158.
- 檀原 徹(1995)第四紀テフラの高精度FT年代測定―ジルコンとガラスを用いた測定法の確立に向けて―. 第四紀研究, 34, 225–241.
- 檀原 徹・岩野英樹・吉岡 哲(1999) ゼータ較正に基づいた 外部ディテクター法,再エッチ法による大町テフラ群のジル コンFT 年代の再検討―ゼータ値決定と既報値の利用に関す る提唱―.フィッション・トラック ニュースレター, 12, 1–15.
- Danhara, T., Kasuya, M., Iwano, H. and Yamashita, T. (1991) Fission track age calibration using internal and external surfaces of zircon. *Journal of Geological Society of Japan*, **97**, 977–985.
- Danhara, T., Yamashita, T., Iwano, H. and Kasuya,M. (1992) An improved system for measuring refractive index using the thermal immersion method.

Quaternary International, 13/14, 89-91.

- 原山 智(1987)更新世中期における,広域テフラ―火砕流堆積 物―給源火道対比の一例―いわゆる"クリスタル・アッシュ" の給源. 1987 年度秋季火山学会大会予稿集, 105.
- 羽鳥謙三・寿円晋吾(1958)関東盆地西縁の第四紀地史(Ⅱ). 地質学雑誌, **64**, 232–249.
- 羽鳥謙三・成瀬 洋(1957)関東西部の古期ロームの分布と鉱物 組成(演旨). 地質学雑誌, **63**, 432.
- 平賀章二・市川米太(1988)熱ルミネッセンス法による火山灰の 年代測定一日本地質学会第93年会シンポジウム『100万年 より新しい試料の地質年代測定』ブラインドテスト用パミス タフを試料として一.地質学論集,29,207-216.
- 本郷美佐緒(2009)大阪堆積盆地における中部更新統の花粉生層 序と古環境変遷. 地質学雑誌, 115, 64-79.
- 藤本治義(1936) Stegodon orientalis shodoensis MATSUMOTO?の新産地.地質学雑誌, **43**, 45–46.
- Hurford, A. J. (1990a) Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the I. U. G. S. Subcommission of Geochronology. *Chemical Geology*, **80**, 171–178.
- Hurford, A. J. (1990b) International Union of Biological Sciences Subcommission on Geochronology recommendation for the standardization of fission track dating calibration and data reporting. *Nuclear Tracks* and Radiation Measurements, **17**, 233–236.
- Hurford, A. J. and Green, P. F. (1983) The zeta age calibration of fission-track dating. *Isotope Geoscience*, 1, 285–317.
- 飯島南海夫・塩川グループ(1967)東北信州におけるローム層の 問題点. 第四紀, 11, 39–49.
- 今井 登・下川浩一(1990)第四紀火山灰の ESR 年代測定.月 刊地球, **12**, 14–19.
- 伊藤久敏(1999)FT STAge システムを用いたテフラ年代測定法. フィッション・トラック ニュースレター, 12, 39-42.
- Ito, H. and Danišík, M. (2020) Dating late Quaternary events by the combined U-Pb LA-ICP-MS and (U-Th)/ He dating of zircon: A case study on Omachi Tephra suite (central Japan). *Terra Nova*, **32**, 134–140.
- 伊東徳治・朝田二郎・中島豊志・西尾 顕(1988) 八ヶ岳地域の 鮮新統および更新統から産出した植物遺体・花粉化石.地団 研専報, 34, 191–203.
- 岩野英樹・檀原 徹(1997)高品位モニターを用いたフィッション・ トラック年代測定システムのゼータ較正とシステム間比較. フィッション・トラック ニュースレター, 10, 11-20.
- Iwano, H. and Danhara, T. (1998) A re-investigation of the geometry factors for fission-track dating of apatite, sphene and zircon. In Van den Haute, P. and De Corte, F. (eds.), Advances in Fission-Track Geochronology. Kluwer Academic Publishers, New York, pp. 47–66.
- 鎌田浩毅・檀原 徹・山下 透・星住英夫・林田 明・竹村恵 二(1994)大阪層群アズキ火山灰および上総層群 Ku6c火 山灰と中部九州の今市火砕流堆積物との対比一猪牟田カルデ ラから噴出した co-ignimbrite ash一.地質学雑誌, 100, 848-866.

関東火山灰グループ (1992) 秩父盆地の多摩ローム層の鉱物組成.

第四紀, 25, 79-82.

- 関東火山灰グループ(2001)多摩 I ローム層の鉱物組成とテフラの対比. 地球科学, 55, 23-36.
- 関東火山灰グループ・関東平野西縁丘陵団体研究グループ(1998) 関東平野西縁丘陵における多摩 I ローム層の層序と広域テフ ラ「C1」の発見.地球科学, **52**, 498–501.
- 関東ローム研究グループ(1956)関東ロームの諸問題. 地質学雑誌, **62**, 302-316.
- 加藤茂弘・大森繁雄・松田高明・山下 透・檀原 徹・先山 徹・ 半田久美子・佐藤裕司・古谷 裕・小林文夫(2001)兵庫県 北西部・鉢伏山周辺地域の第四紀後期テフラ層序―大山火山 起源のテフラを中心として―.人と自然, **12**, 1–12.
- 加藤碵一・檀原 徹 (1987) 大町テフラ層下部層に挟まれるクリ スタル・アッシュのフィッション・トラック年代. 地質調査 所月報, **38**, 265–280.
- 木村純一(1987)長野県聖山北麓の更新統一中部から上部更新統 一. 地質学雑誌, **93**, 245-257.
- 近藤洋一・八ヶ岳団体研究グループ(1992)八ヶ岳山麓にみら れる「クリスタル・アッシュ」層準の中部更新統.第四紀, 25,37-46.
- 小西省吾・吉川周作(1999)トウヨウゾウ・ナウマンゾウの日本 列島への移入時期と陸橋形成.地球科学, **53**, 125–134.
- Kotaki, A., Katoh, S. and Kitani, K. (2011) Correlation of Middle Pleistocene crystal-rich tephra layers from Daisen Volcano, southwest Japan, based on the chemical composition and refractive index of mafic minerals. *Quaternary International*, **246**, 105–117.
- Lisiecki, L. E. and Raymo, M. E. (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ^{18} O records. *Paleoceanography*, **20**, PA1003.
- 町田 洋(2008) 大磯丘陵から下総台地までの第四系. 日本地質 学会(編),日本地方地質誌 3. 関東地方. 朝倉書店,東京, pp. 299–315.
- 町田 洋・新井房夫(2003)新編火山灰アトラス [日本列島とその周辺].東京大学出版会,東京, vii +336 p.
- 町田 洋・新井房夫・村田明美・袴田和夫(1974) 南関東におけ る第四紀中期のテフラの対比とそれに基づく編年. 地学雑誌, 83, 22-58.
- 町田 洋・新井房夫・杉原重夫(1980) 南関東と近畿の中部更新 統の対比と編年―テフラによる一つの試み―. 第四紀研究, 19, 233–261.
- 町田瑞男(1973)武蔵野台地北部およびその周辺地域における火 山灰層位学的研究.地質学雑誌, 79, 167–180.
- 町田瑞男(1996)秩父市安立における尾田蒔火山灰層のフィッション・トラック年代. 埼玉県立自然史博物館研究報告, 14, 7-9.
- Machida, M. (1999) Quaternary geology in the central to western part of the Kanto tectonic basin. *Research Bulletin, Saito Ho-on Kai Museum of Natural History*, 67, 1–85, with 4 plates.
- 町田瑞男・磯田亮洋(1983)関東平野西縁,秩父盆地の第四紀地 史.埼玉県立自然史博物館研究報告,1,51-66.
- 町田 貞・井口正男(1952)秩父盆地の段丘地形. 地理学評論, 25, 221-229.
- 松本盆地団体研究グループ(1972)松本盆地の第四紀地質の概

観一松本盆地の形成過程に関する研究(1). 地質学論集,7,294–304.

- 皆川紘一・町田瑞男(1971)南関東の多摩ローム層序.地球科学, 25, 164–176.
- 中村正芳・高崎地学愛好会(1989)群馬県西部碓氷川下流域の第 四系-野殿集塊岩層の再検討.日本地質学会第96年学術大 会講演要旨集,276.
- 中谷 進(1972)大町テフラ層とテフロクロノロジー. 第四紀研 究, 11, 305-317.
- 中里裕臣・檀原 徹(2005) TE-5 テフラの年代と給源. 日本地 質学会第 112 年学術大会講演要旨, 83.
- 中里裕巨・佐藤弘幸(1998) 銚子半島犬吠層群における大町 APmテフラ群の層位. 日本第四紀学会講演要旨集, 28, 62-63.
- 中澤 努・中里裕巨・大嶋秀明・堀内誠示(2009)関東平野中
 央部における上総一下総層群境界: 越谷 GS-KS-1 コアでの
 MIS12 層準の特定.地質学雑誌, 115, 49–63.
- 楡井 尊(2017)関東内陸部における中期更新世の古植生及び古 気候~約78万年前から12万年前~. 埼玉県立自然の博物館 研究報告, 11, 1-16.
- 埼玉県 (1954) 20 万分の1 埼玉県地質図および同説明書. 埼玉県, 44p.
- 斉藤尚人(2000)八ヶ岳東麓と関東平野の中期更新世テフラの対 比とその編年.第四紀研究, **39**, 15-23.
- 斉藤尚人・クリスタル・アッシュ(大町 APm, BP)研究会(1996) 中部日本における中期更新世の指標テフラ.第四紀研究, 35, 339–345.
- 坂倉勝彦 (1935) 千葉県小櫃川流域の層序 (その2). 地質学雑誌, 42, 753-784.
- 坂田健太郎・中澤 努・中里裕臣(2011)八潮 GS-YS-2 コアに 見られる更新統下総層群の堆積サイクルとテフロクロノロジ 一.地質調査所報告, **62**, 329–345.
- 坂田健太郎・中澤 努・中里裕臣(2012)秩父盆地尾田蒔丘陵に みられる中期更新世テフラの記載岩石学的特徴.地質調査所 報告, **63**, 119–127.
- 清水康守・堀口萬吉(1994)関東平野西部の多摩ローム層につい て、埼玉大学紀要,自然科学編, 29, 107-119.
- 鈴木毅彦(1992) 大町 APm テフラ群の岩石記載的特性とそれに もとづく対比. 第四紀, 25, 1–5.
- 鈴木毅彦(2000)埼玉県秩父盆地に分布するテフラとその考古編 年上の意義.月刊地球,22,687-692.
- 鈴木毅彦(2003)テフラ研究からみた中部山岳域周辺における中・ 後期更新世編年の諸問題.第四紀研究, **42**, 157–163.
- 鈴木毅彦 (2008) 秩父盆地. 日本地質学会 (編), 日本地方地質誌 3. 関東地方. 朝倉書店, 東京, pp. 365–367.
- 鈴木毅彦・藤原 治・檀原 徹 (1998) 関東・中部地方に分布す る第四紀テフラのフィッション・トラック年代. 地学雑誌, 107, 348–367.
- 鈴木毅彦・早川由紀夫(1990)中期更新世に噴出した大町 APm テフラ群の層位と年代.第四紀研究, 29, 105–120.
- 鈴木毅彦・早津賢二(1991)関東-中部地方の第四紀テフラ研 究一特に中期更新世テフラの重要性一.第四紀研究, 30, 361-368.
- 高木俊男・柳田 誠・藤原 治・小澤昭男(2000)河岸段丘から 推定した河床高度変化の歴史.地学雑誌, **109**, 366–382.

- 高山俊昭・佐藤時幸・亀尾浩司・後藤登美子(1995)第四系石灰 質ナンノ化石層序と鮮新統/更新統境界の年代値.第四紀研 究,34,157-170.
- 竹本弘幸・米澤 宏・由井将雄・小池一之(1987)中之条湖 成層の層序とフィッショントラック年代. 駒沢地理, 23, 93-108.
- 竹下欣宏(2004)中部日本,中期更新世古期御岳火山の火山活動 史ーテフラ層序学と記載岩石学に基づいて一.地質学雑誌, 110,158–174.
- 竹下欣宏・三宅康幸・酒井潤一(2005)古期御岳火山起源の中期 更新世テフラと房総半島上総層群中のテフラとの対比. 地質 学雑誌, 111, 417-433.
- 徳橋秀一・遠藤秀典(1984)姉崎地域の地質.地域地質研究報告(5万分の1図幅),地質調査所,136 p.
- Toyoda, S., Tsukamoto, S., Hameau, S., Usui, H. and Suzuki, T. (2006) Dating of Japanese Quaternary

tephras by ESR and luminescence methods. *Quaternary Geochronology*, **1**, 320-326.

- Tsukamoto, S., Murray, A. S., Huot, S., Watanuki, T., Denby, P. M. and Bøtterjensen, L. (2007) Luminescence property of volcanic quartz and the use of red isothermal TL for dating tephras. *Radiation Measurements*, 42, 190–197.
- 矢部長克・青木簾二郎(1907)関東構造盆地周縁山地に沿へる段 丘の地質時代.地理学評論, 3, 79-87.
- 矢口裕之・小森郁美・長谷川桂子(1992)クリスタルアッシュ の層位と対比. 日本地質学会第92年学術大会講演要旨集, 230.
- 八ヶ岳団体研究グループ(1988)八ケ岳山麓の中部更新統.地団 研専報, 34, 53-89.
- 吉永秀一郎・宮寺正美(1986) 荒川中流域における下位段丘の形 成過程. 第四紀研究, 25, 187-201.

付表 1 大町 APm テフラ群とその関連テフラの名称および初出論文.

Appendix Table 1. Names and abbreviations for the Omachi APm tephras and related tephra layers with their original references.

テフラ名	略称	出典	別	名	略	称	出	典
長野県大町市大町	スキー場、長野市	大岡中牧樺平(旧長野県大岡村樺平)						
大町Apmテフラ群	APm / APms	鈴木·早川(1990)						
A_1Pm , A_2Pm , A_3Pm	A ₁ Pm, A ₂ Pm, A ₃ Pm	中谷(1972), 鈴木・早川(1990)						
A ₄ Pm, A ₅ Pm	A ₄ Pm, A ₅ Pm	鈴木·早川(1990)	クリスタルア	ッシュ4, 5	CA4,	CA5	木村(198	7)
A ₆ Pm	A ₆ Pm	矢口ほか(1992)						
オレンジ軽石	O.P.	木村(1987)	加久藤火山	灰	Kkt		鈴木·早泽	聿(1991)
長野県松本盆地,	八ヶ岳周辺							
黒雲母浮石	B ₁ , B ₂ , B ₃	飯島・塩川グループ(1967)						
	B_0	八ヶ岳団体研究グループ (1988)						
	B ₂ '	斉藤・クリスタル・アッシュ(大町APm, BP)研究会(1996)						
	B _{0.5}	斉藤・クリスタル・アッシュ(大町APm, BP)研究会(1996)						
クリスタルアッシュ	C ₁ , C ₂ , C ₃ , C ₄	松本盆地団体研究グループ(1972)						
角閃石含有白色軽石	Ho. 白Pm.	八ヶ岳団体研究グループ (1988)						
	Yt-hop	町田·新井(2003)						
ヌカ 1	Nuka1	鈴木·早川(1990)	加久藤火山	灰	Kkt		鈴木·早泽	聿(1991)
	Yt-Nuka1	町田·新井(2003)						
関東平野, 房総半,	B ,							
クレンザー	Cleanser	中村·高崎地学愛好会(1989)	NLu-20		NLu-	20	竹本ほか	(1987)
尾田蒔火山灰	ODA	鈴木·早川(1990)						
八王子黒雲母軽石	HBP	皆川·町田(1971)						
HBPup	HBPup	斉藤(2000)						
TE-5	TE-5	町田ほか(1974)	TE-5a		TE-5a	a	町田·新邦	+ (2003)
TE-5up	TE-5up	斉藤(2000)	TE-5b		TE-51	b	町田・新邦	+ (2003)
J4	J4	徳橋·遠藤(1984)						
J4up	J4up	斉藤(2000)						
銚子1aテフラ	Tyla	中里·佐藤(1998), 中里·檀原(2005)						
銚子1bテフラ	Ty1b	中里·佐藤(1998), 中里·檀原(2005)	J4up		J4up		斉藤(200	0)