紀伊半島中央部,大峯地域の中新世 | タイプ・Sタイプ 花崗岩のアンモニウム含有量と微量化学組成

田結庄 良昭¹⁾•村田 守²⁾ ¹⁾神戸大学教育学部地学教室 ²⁾鳴門教育大学自然系地学教室

Ammonium and Trace Elements Behavior in Miocene I-type and S-type Granitic Rocks in the Ohmine District, Central Kii Peninsula, Japan

Yoshiaki Tainosho¹⁾ and Mamoru Murata²⁾

 ¹⁾ Department of Geology, Faculty of Education, Kobe University, Nada-ku, Kobe, 657 Japan
²⁾ Department of Geosciences, Faculty of Science, Naruto University of Education,

Naruto, Tokushima, 772 Japan.

Abstract

Ammonium content of Ohmine granitic rocks in the central Kii peninsula, Outer Zone of Southwest Japan, has been determined in order to examine the behavior of ammonium and trace elements among two types of granitic rocks, I-type and S-type. $\rm NH_4^+$ content of the rocks ranges from 10 to 47ppm (average, 21ppm) in the I-type granitic rocks (Dorogawa and Shirakura plutons), and 7 to 21ppm (average, 15ppm) in the S-type granitic rocks. The Ohmine I-type granitic rocks are high in Ni and Sr and low in F, Rb and SiO₂ compared with the S-type ones.

 NH_4 is considered to be incorporated into solidus and F into liquidus (Wyllie and Tuttle, 1961). The I-type Shirakura granitic rocks are lower in NH_4 and higher in F than the I-type Dorogawa ones. NH_4 and F data are also consistent with the conclusion of Murata & Yoshida (1985); the Shirakura granitic magma would be produced by lower degree of partial melting than the Dorogawa one.

Key words : ammonium content, trace elements, Ohmine granite, I-type S-type granite

はじめに

田結庄・市原(1988)は、オーストラリアのS タイプ花崗岩類の黒雲母が I タイプ花崗岩類のも のに比較して高いアンモニウム含有量を示すこと を見いだし、S タイプ花崗岩類の高いアンモニウ ム含有量は堆積岩類がマグマの成因に関与した結 果であろうと推定した.また、岩体周縁の堆積岩 を同化した花崗岩は高いアンモニウム含有量を示 すこと(田結庄ほか、1989)、交代作用で形成さ れた花崗岩はマグマから形成された花崗岩に比べ、 高いアンモニウム含有量を示すことが報告された (田結庄・市原、1991).このように、花崗岩中の アンモニウム含有量は、花崗岩質マグマの生成に 堆積岩が関与したかどうか知る上で有効な指標と なりうるものと考えられる、しかし、これまで、 マグマ中でのアンモニウムの挙動については不明 な点が多く,解釈については充分検討出来なかっ た.また,アンモニウムと他の元素,特に,微量 元素との関係についてはふれられてこなかった. そこで,筆者らは微量元素の研究が詳細に行われ た西南日本外帯,大峯地域の花崗岩類のアンモニ ウム含有量を測定するとともに,微量元素との関 係について検討し,マグマ中でのアンモニウムの 挙動をさぐる基礎資料を作成したので,ここに報 告する.

試料と試料採取地域の地質

紀伊半島中央部に分布する大峯花崗岩は I および S の両タイプの花崗岩から構成され、両タイプ の花崗岩が密接に伴われることが本邦で初めて発 見された花崗岩である(村田, 1982). 大峯花崗 岩については, これまで金子(1967), Kawasaki (1980) などによって研究されてきたが, 村田 (1982) により I および S タイプの花崗岩が分布 することが報告され, さらに, 詳しい地球化学的 検討が行われた(村田, 1984; 村田・吉田, 1985). 本報告では村田(1982) によりその概説を述べる.

大峯地域の地質略図を Fig.1 に示した. 基盤 岩は仏像構造線を境にして,北部が秩父累帯,南 部が四万十累帯である.また,本地域南東部には 中新世中期の熊野層群が分布する. 大峯花崗岩は、上述の地層群すべてを貫く細粒 斑状の花崗岩および花崗閃緑岩である.それらの 年代は12-15Ma前後の中新世中期であると考え られている(村田,1984).大峯花崗岩は7つの 岩体に区分でき、それらはほぼ直線的に、南北方 向に約40kmにわたって分布する(Fig.1).北 から洞川、白倉、川迫、旭、天狗山、白谷、片川 - 椋呂の各岩体が分布する.このうち、洞川と白 倉の2岩体が I タイプ花崗岩に属し、後の5岩体 がSタイプ花崗岩である.I タイプ花崗岩は秩父 累帯に貫入し、Sタイプ花崗岩は川迫岩体の一

Fig.1. Geological sketch map of the Ohmine district (after Murata, 1982) and the locations of rock samples used in this study. Stars with numbers show sample locations and correspond to those listed in Table 1. Triangles are peak heights in meters. G stands for Group; A.R., acidic rocks; I; intrusive; T.L., tectonic line.

部を除き,四万十累帯に貫入している.

洞川岩体は I タイプ花崗岩の主要岩体で, 優黒 質斑状の角閃石-黒雲母花崗岩および花崗閃緑岩 からなる. 白倉岩体は優白質の角閃石-黒雲母花 崗岩である. 白倉岩体はMgOやコンパチブル元 素に乏しいことから,部分溶融の程度の低いとき の液から形成され,洞川岩体は上記元素に富むこ とから,より部分溶融の進んだ液から形成された と考えられる(村田・吉田, 1985).

川迫岩体は最も北部に分布するSタイプ花崗岩 で,斑状の董青石-黒雲母花崗岩である.旭岩体 は小規模な岩体で,優白質斑状の黒雲母花崗岩で ある.天狗山岩体はSタイプ花崗岩の中で最も広 く分布する.この岩石は優白質斑状の董青石-黒 雲母花崗岩である.白谷岩体はより南部に分布す る斑状の董青石-ざくろ石-黒雲母花崗岩である. 片川-椋呂岩体は最も南部に分布する花崗斑岩, 石英斑岩である.これらSタイプ花崗岩は鉱物組 合せや岩石の化学組成に大きな差がなく,全岩化 学組成はともに一連の変化経路を示すことから, 同一マグマ起源と判断される(村田, 1984).

微量元素の研究から、Sタイプ花崗岩は黒雲母 と正長石を含む岩石の部分溶融によって生じたと 考えられており、Iタイプ花崗岩は角閃石と斜長 石に富む中性火成岩の部分溶融物と考えられる (村田・吉田, 1985).また、部分溶融の条件は 5Kb,700℃と考えられている(村田, 1984).

アンモニウムの分析方法

岩石をジョークラッシャーで砕き,ボールミル で粉末にし,試料とした.全岩のアンモニウム含 有量を Stevenson (1960)の方法により測定し た.ただし,アンモニウムイオン濃度の比色に際 しては,ネスラー試薬を用いず,インドフェノール を用いた.アンモニウムの分析誤差は約1ppmで ある.

分析結果

大峯花崗岩の全岩のNH₄+含有量を各岩体ごと にみてみる. Iタイプ花崗岩のNH₄+含有量をみ ると, 洞川岩体では, 14-47ppmと岩相による 差異があり、平均30ppmのNH₄+を含有する (Table 1). 白倉岩体では、10-12ppm,平均11 ppmと洞川岩体より低い値をもつ. Iタイプ花 崗岩全体では、14-47ppmで、平均21ppmであ る.

次に、Sタイプ花崗岩のNH₄+含有量をみると (Table 1), 北部に分布する川迫岩体では,18 ppmのNH₄⁺を含有する. 旭岩体では, 12-17 ppm, 平均14ppmのNH₄⁺を含有する. 天狗山 岩体では、10-15ppm, 平均13ppmと旭岩体と ほぼ同じNH₄+を含有する. 南部に分布する白谷 岩体では7-17ppm, 平均11ppmとSタイプ花 崗岩の平均15ppmよりやや低いNH₄+を含有する. 最も南部に分布する片川-椋呂岩体では、14-21 ppm, 平均17ppmとSタイプ花崗岩の中ではや や高い NH₄+を含有する. Sタイプ花崗岩全体で は、7-21ppmで、平均は15ppmである(Table 1). 岩相は、北部に分布する旭岩体で黒雲母容量比が 低く, 白谷岩体でやや高い黒雲母容量比を示し, より南部の岩体でアルミニウムに富み、ざくろ石 や菫青石を含むが,各岩体のNH4+含有量に顕著 な差はない。

考 察

大峯花崗岩(全岩)およびオーストラリアの I タイプとSタイプ花崗岩(黒雲母)のNH₄+含有 量を図示すると Fig. 2が得られる.大峯の I タ イプ花崗岩のNH₄+含有量は明らかに,大峯のS タイプ花崗岩のものより高い値を有する.この結 果は全岩と黒雲母のNH₄+含有量の違いもあり単 純に比較できないが,オーストラリアでの花崗岩 類から得られた結果,すなわちSタイプ花崗岩が Iタイプ花崗岩より高いNH₄+含有量を有する結 果と異なっている.

次に,部分溶融の程度が異なる岩体間での NH₄+有量の違いについて検討する.白倉岩体は, 部分溶融の程度が低いときに,一部の液が抜け出 して形成されたものであり,さらに部分溶融が進 んだ液から洞川岩体のマグマが形成されたと考え られている(村田・吉田,1985).これら岩体の NH₄+含有量は洞川岩体で平均30ppm,白倉岩 体で平均11ppmと,部分溶融の進んだ洞川岩体 Table 1. Rock descriptions, NH_4^+ contents and some chemical data of the Ohmine I-type and S-type granitic rocks. SiO₂, K_2O and F are from Murata & Yoshida (1985). Ni, Sr and Rb are reanalyzed values using Rigaku 3370 XRF spectrometer (Murata *et al.*, 1990).

Sampl	e No.	Description of rocks				Si02	K≥0	F	Ni	Sr	Rb
			NH₄ʻppn	ı av.		%	%	ppm	p p m	ppm	10 pm
From	I-type plut	on									
D	orogawa plu	ton									
D 3	very fine-	grained \sim fine-grained porphyritic									
	hornblende	biotite granodiorite \sim granite	14	1		65	2.6	568	46	197	101
D4		(ditto)	31	1		65	2.7	460	43	205	114
SKD 1		(ditto)	13	30	i -	62	2.0	510	19	268	85
SKD 2		(ditto)	42			64	2.5	641	34	227	107
SKD2X cognate xenolith in Dorogawa pluton		47			61		47	217	128		
Shirakura pluton				21							
SKK1	leucocrati	c fine-grained porphyritic \sim fine-grai	ned								
	porphyriti	c hornblende biotite granite	12	I.		65	3.1	687	2	206	134
SKK2		(ditto)	10	11		66	3.2	696	4	245	153
From	S-type gran	ite									
A	sahi pluton										
A2	leucocrati	c fine-grained porphyritic \sim medium-gr	ained								
	biotite gr	anite	12	1		74	4.8	699	7	132	160
A 3		(ditto)	14	14	I	75	4.7	744	4	81	185
A		(ditto)	17	1		74	4.7	1039	1	23	243
Т	enguyama pl	uton									
Tl	pale brown	cordierite-muscovite-biotite									
	granite		15	i i		75	4.8	931	5	42	220
T 2		(ditto)	10	13		76	5.0	1164	3	14	217
S	hiratani pl	uton									
ST1	fine-grain	ed porphyritic \sim fine-grained porphyri	tic		ļ						
	cordierite	garnet-biotite granite	8	i -		69	3.2	1216	7	151	149
ST2		(ditto)	7	1		70	2.3	1042	6	158	118
ST3		(ditto)	11	1		71	3.7	1077	9	nd	142
ST4		(ditto)	Ι2			71	3.5	891	10	148	143
ST5		(ditto)	17	11		71	2.5	856	15	234	125
ST6		(ditto)	11		15	71	4.5	774	5	123	154
ST8		(ditto)	13			75	5.4	962	4	77	180
ST9		(ditto)	9			75	4.8	287	4	62	177
ST10		(ditto)	11	l		76	4.6	729	3	76	185
K	ose pluton										
K 1	leucocrati	c fine-grained porphyritic \sim fine-grai	ned								
	porphyriti	c cordierite-biotite granite	18			73	4.2	1074	9	103	203
K	atago-Mukur	o pluton									
KM1	very fine–	grained granite porphyry \sim fine-graine	d								
	porphyriti	c granite	21	ı		74	4.1	1121	7	133	171
KM2		(ditto)	16	17	i	74	4.4	738	3	72	179
		(ditto)	14	1							

でNH₄+の含有量が高くなることを示している (Fig. 2). Wyllie and Tuttle (1961) による花 崗岩 – 水系, 曹長石 – 水系でのNH₃の添加によ る溶融実験はNH₄が液相よりも固相に入りやす いことを示している.すなわち,起源物質の部分 溶融の程度が低いと,NH₄は固相に残り,逆に 部分溶融の程度が高いとNH₄はしだいに液相中 に濃集してくると推察される.洞川岩体は白倉岩 体より部分溶融が進んだマグマから形成された岩 体なので,マグマ中のNH₄が高く,そのため, 白倉岩体より高いNH₄+含有量を有するに至った と考えられる.このことは残留固相あるいはマグ マからの早期晶出物の集合体と考えられる同源捕 獲岩が47ppmと最も高いNH₄含有量を有するこ とからも支持される.

次に、NH₄+と微量元素との関係について検討 する.まず、NH₄+と液相中に濃集しやすいFや Rbとの関係についてみる.NH₄+は固相に、Fや Rbは液相に入りやすいので負の関係が予想され る.しかし、FやRbの増加に対し、NH₄+は系統 的に減少する傾向を示さず、明瞭な相関関係を示 さない(Figs.3,4).次に、NH₄+とNiやSrと の関係について検討する.これらはいずれも固相 に入りやすいので、正の相関が予想される.しか し、NiやSrの変化に対し、NH₄+はなんら規則 的変化を示さず、正の相関関係はみられない

Fig.2. NH_4^+ contents for bulk rocks from Ohmine granitic rocks. Data for biotite from Australian granitic rocks are from Tainosho and Itihara (1988).

Fig.3. NH_4^+ -F variation diagram. Data for F are from Murata & Yoshida (1985).

Fig.5. NH_4^+ -Ni variation diagram. Data for Ni are from Murata *et al.* (1990).

(Figs. 5, 6). また, NH₄+ ikK^+ を置換して黒 雲母中にその多くが分配されるので(Honma and Itihara, 1981), NH₄+ kK^+ は正の相関が予 想される. しかし, 岩石中のK₂Oの増加に対し, NH₄+ik規則的に増加せず, やはり相関関係はみ られない(Fig. 7). このように, NH₄+k微量 元素との間には期待された相関関係が見られず, NH₄+の挙動の複雑さを示している.

Fig.4. NH₄⁺-Rb variation diagram. Data for Rb are from Murata *et al.* (1990).

Fig.6. NH_4^+ -Sr variation diagram. Data for Sr are from Murata *et al.* (1990).

以上議論してきたように、花崗岩中のNH₄+含 有量の大小は、起源物質とそのNH₄+含有量、部 分溶融や結晶分化作用の程度がわからないと単純 に比較できないこと、また、NH₄+のように固相 に入るものはその挙動が複雑で、明確にできない. そのため、今後、形成条件の判明した花崗岩類の NH₄+の分析を多量に行い、相互比較するなど、 基礎的データを作成することが必要である.

Fig.7. $NH_4^+ - K_2O$ variation diagram. Data for K are from Murata & Yoshida (1985).

神戸市鶴甲の藤田智子氏にはアンモニウム分析 の援助を受けた. 蛍光X線分析による微量元素の 分析に際し,京都大学理学部巽 好幸博士,川本 竜彦氏,姫路工業大学理学部後藤 篤博士のご協 力を得た.記して謝意を表する.

文 献

- Honma, H. and Itihara, Y. (1981) Distribution of ammonium in minerals of metamorphic and granitic rocks. *Geochim. Cosmochim. Acta.*, 45, 983–988.
- 金子弘二(1967)紀伊半島中部の大峯火成岩類. 宮崎 大学教育学部. No.22, 18-32.

- Kawasaki, M. (1980) Ohmine acid rocks, Kii peninsula – geology and major element chemistry – . Jour. Japan, Assoc. Min. Petr. Econ. Geol., 75, 56-102.
- 村田 守(1982)紀伊半島中央部,大峯地域のSタイ プおよび I タイプ花崗岩質岩. 岩鉱, 77, 267-277.
- 村田 守(1984) 紀伊半島中央部,大峯地域の中新世 IタイプおよびSタイプ花崗岩質岩の岩石学,岩 鉱, **79**, 351-369.
- 村田 守・吉田武義(1985)紀伊半島中央部,大峯地 域の中新世 I タイプおよび S タイプ花崗岩質岩の 微量化学組成. 岩鉱, 80, 227-245.
- Murata, M., Tatsumi, Y., Goto, A. and Kohno, H. (1990) XRF determination of trace elements of the Japanese standard rocks and some Japanese granitic rocks. Granite symposium celebrating the 70th birthday of Wally Pitcher (Abstract).
- Stevenson, F.J. (1960) Microdetermination of nitrogen in rocks and silicate minerals by sealed tube digestion. Analyt. Chem. 32, 1704-1706.
- 田結庄良昭・市原 優子(1988)オーストラリアの I タイプ・Sタイプ花崗岩の黒雲母にみられる NH₄*含有量の違い.地質雑,94,749-756.
- 田結庄良昭・清水正明・市原優子(1989)山梨県,徳 和深成岩体の磁鉄鉱系・チタン鉄鉱系花崗岩類に 含まれる黒雲母のアンモニウム含有量の差.地質 雑,95,559-562.
- 田結庄良昭・市原優子(1991)隠岐島後の片麻岩・花 崗岩の黒雲母にみられるアンモニウム含有量の特 徴、地質雑、97,239-242.
- Wyllie, P.J. and Tuttle, O.F. (1961) Experimental investigation of silicate system containing two volatile components, Part II : the effects of NH_3^* and HF, in addition to H_2O on the melting temperatures of albite and granite. *Amer. Jour. Sci.* **259**, 128-143.

(1992年2月6日受理)